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PREFACE

Compressible fluid flow is modeled by a system of partial differential equations (PDEs)
that express the conservation laws of mass, momentum and energy. The PDEs must be
supplemented by an equilibrium equation of state (EOS) which characterizes the material
properties of the fluid. For a thermodynamically consistent EOS the PDEs are hyperbolic.
Consequently, an important aspect of fluid flow is its non-linear wave behavior. These
lectures focus on the wave structure of fluid flow in both one and two dimensions.

The perspective presented here results from working with James Glimm and collab-
orators on the development of the front tracking algorithm. However, the understanding
of the wave structure is important in its own right. In particular, for a well-posed initial
value problem, the wave structure places stronger constraints on the EOS then is imposed
by thermodynamics. Constriants on the EOS are important for all numerical algorithms
since their solutions must reflect those of the PDEs they are approximating.

There is a tendency among those performing numerical calculations to treat an EOS
as a given. This is due to the complex physical phenomena needed in order to understand
the construction of a model EOS and its domain of validity. Uncritically accepting an EOS
that violates the constraints imposed by the wave structure can result in a calculation being
numerical unstable or giving a qualitatively incorrect solution for the intended application.

Simple wave patterns can be used as building blocks to obtain an understanding of
more complicated flows. This is particularly useful for applications when analytic solutions
are not available. The wave structure provides an important consistency check on the most
singular part of the solution to the fluid flow and can be used for assessing the accuracy
of a calculation.

The understanding of the topics presented is the result of joint work with several
colleagues. In particular, it is a pleasure to acknowledge the contributions of Bradley

Plohr, John Grove and Klaus Lackner.
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These lecture notes are based on a two week coarse taught at the Ecole d’Eté
d’Analyse Numérique, sponsored by C.E.A., .LN.R.I.A. and E.D.F. The summer school
focused on Problemes Hyperboliques et Applications aux Ecoulements Réactifs
et Non-Réactifs. It was held at the Centre d’Etudes du Bréau (outside Paris, France)
from 28 June — 9 July, 1993. I wish to express my appreciatation to the organizers of the

summer school for their hospitality.

Ralph Menikoff
Los Alamos, NM
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Lecture 1

Compressible Fluid Equations

Fluid flow is a theory for a continuous medium, and is modeled by a system of partial
differential equations (PDEs). These equations can be written in different forms to em-
phasis different aspects of the problem. In this lecture we review the various forms of the
equations for fluid flow in one-dimension. We assume an ideal fluid in which transport

effects (such as viscosity, heat conduction and radiation) are neglected.

1.1 Conservation Form

Physical principles lead to integral equations that express the conservation of mass,
momentum and energy; see Ex. 1.1. The integral equations are equivalent to the PDEs in

conservation form

p pu 0
Oy pu + 0y pu? + P =—| poy® (1.1)
p(3u? + E) p(3u? + E)u+ Pu pudy ®

= particle velocity,
= mass density,

u
p
E = specific internal energy,
P = pressure,
P

= gravitational potential energy.

In conservation form the PDEs consist of the sum of terms involving the time derivative
of a density for a conserved quantity, the spatial derivative of a flux and a source term.
Source terms do not contain any partial derivatives of the dependent variables; ®(z) is

assumed to be independent of the fluid variables. Henceforth, we assume that the effect
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of gravity is small and the source terms can be neglected. However, the dominant effect
for multi-dimensions can frequently be approximated as a geometric source term for quasi
1-D fluid flow; see Exs. 1.2 and 1.3.

The fluid equations must be supplemented by a constitutive relation that specifies
the material properties. The constitutive relation of a fluid is called an equation of
state (EOS). For the ideal fluid flow equations only an incomplete EOS is needed; P(V, E)

where V' = 1/p is specific volume. A simple example is an ideal gas EOS
P=(xw-1)E/V (1.2)

where v > 1. The EOS for realistic materials are described later in more detail.
Mathematically, the conservation form of the fluid flow equations are an example of

a System of Quasi-Linear Hyperbolic PDEs of the form
Oy + 0, F (W) =0, (1.3)

where @ and F are vectors with N components. These equations (i) are linear in deriva-
tives, (ii) have a non-linear flux function, F (), and (iii) are hyperbolic when the linearized

equations are hyperbolic; i.e., the PDEs can be written as
Oyl + DF - 0,wW =0, (1.3a)
and the derivative matrix of the flux function,
DF;; = 0F;/0w; , (1.4a)

has a complete set of eigenvectors with real eigenvalues. Thus, DF can be expressed as

=

DF =Y \NEi®L; (1.4b)

where \; are the eigenvalues, and RZ and EZ are right and left eigenvectors normalized such
that (L, RJ) = 0, ;. The right eigenvectors can be though of as a matrix with one column
and the left eigenvectors as a matrix with one row.

It follows from Egs. (1.3a) and (1.4b) that
Li- (O + \i0p) W =0, (1.5a)

Lecture 1.1 —2- Lecture 1.1
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for:=1,2,---, N. Hence,

(8 + \iBy) (L; - @) = @ - (8 + X\iBy) L; . (1.5b)

We note, for a linear flux function, L;(z,t) = constant and the right hand side vanishes. In

this case the system of PDEs reduces to N scalar wave equations, with wave speeds \;. For

this reason, the eigenvalues of DF are called characteristic velocities. Subsequently,
we will see that the characteristic velocities play an important role in the analysis of both
non-linear waves and numerical algorithms.

Remark 1.1: The term characteristic is sometimes used to denote a typical scale. As an
example of this usage, for viscous fluids the dimensionless Reynolds number is defined
as Re = UL/v, where U and L are characteristic velocity and length scales for the flow
of interest, and v is the kinematic viscosity. In contrast, the term characteristic velocity
in the context of hyperbolic PDEs has a precise meaning; namely, a wave speed for the

linearized equations.

For a non-linear flux function, the wave speeds A; can not be treated as globally
constant. This leads to non-linear wave behavior in the solution of the PDEs. In these
lectures, the non-linear wave properties are derived in the context of fluid flow. The
properties for compressible fluid flow which can be abstracted and applied in general to
Quasi-Linear Hyperbolic PDEs are summarized below:

0. Ei and \; are functions of w and hence of z and t.

1. A solution to the Cauchy problem with smooth initial data does not necessarily remain

smooth. Discontinuities called shock waves can form in a finite time; see Exs. 1.6
and 1.7. A discontinuous solution to the PDEs in the sense of a distribution is known
as a weak solution. This is in contrast to a classical smooth solution to the PDEs.
2. Conservation form enables weak solutions to be well defined. The jump in @ across a
shock wave is not arbitrary. Moreover, the wave speed is related to the magnitude of

the discontinuity. This will be discussed in the next lecture.
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3. Weak solutions are not unique. The PDEs must be supplemented with additional

constraints, which for applications must be determined by the underlying physics. The

additional constraints select out the admissible shock waves. This will be discussed in

the next lecture.

Numerical algorithms to solve PDEs must be compatible with the structure of the solutions.
The qualitative wave structure depends on general properties of the flux function. For the
fluid equations, the flux function is determined by the EOS. The effect of the EOS on the
wave structure will be discussed in great detail in Lecture 4.

Systems of conservation laws frequently occur in physics, and are often modeled by
quasi-linear hyperbolic PDEs. Important examples of such systems are: (i) Steady super-
sonic two-dimensional flow (discussed later in more detail); (ii) Buckley-Leveret equations
for 3 phase flow used in oil reservoir simulations; (iii) Magneto-hydrodynamics; (iv) Elastic
flow in a solid. The general properties of the solution to the fluid flow equations that are
derived in these lectures, also apply to these other systems. Fluid flow is a particularly
nice physical system since there are many applications and experiments that can be used

as a guide for developing an intuition and understanding for the properties of quasi-linear
hyperbolic PDEs.
1.2 Euler’s Equations

By simple algebraic manipulations, the fluid equations (1.1) can be recast in the non-

conservative form

P pOzu
(d/dt) | v | =—| (1/p)0cP (1.6)
E (P/p)0zu

where (d/dt) = 0y +ud, is the convective derivative, i.e., the derivative along a particle
path. For (d/dt) u one subtracts from the momentum equation u times the mass equation,
and for (d/dt)E one subtracts from the energy equation the sum of E times the mass
equation plus u times the average momentum component in Egs. (1.1) and (1.6). This

form of the PDEs for fluid flow is known as the Euler equations.

Lecture 1.1 —4— Lecture 1.2
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The Euler equations are useful for smooth flows. Since they specify the time derivatives
(0¢p, O E and Ozu), they can be used to solve the initial value problem: Given p(z), E(x)
and u(z) at time ¢, find the time evolution of the fluid for ¢ > ¢y,. Boundary condition for
the fluid equations are discussed in the next section. Euler’s equations are not suited for
determining solutions with shock waves. At a discontinuity, the right hand side of Eq. (1.6)
has the form of the product of a step function with a d-function. As a distribution this
product is not well defined.

Invariance properties of fluid flow are easily seen from the Euler equations. In par-
ticular, the equations are Galilean invariant; i.e., invariant under the transformation
¥ = x+upt, ' =t and v = u — ug. The fluid equations are also invariant under the
scale transformation z’ = z/a, t' = t/a and v’ = u, for any @ > 0. Formally, the
fluid equations are time reversal invariant; ie., ' = —t and v/ = —u. However, we will
show that shock waves or discontinuous solutions must break time reversal invariance. The
invariance properties play an important role in the derivation of the elementary waves in
the next lecture.

The fluid variables have dimensions. One is free to choose independently units for
length, time and mass. It is important for numerical algorithms to use a compatible set
of units for which no conversion factors are needed for specific energy density in the form
E, u?, or P/p. Standard sets of compatible units are given in Table 1. We note that a
convenient reference pressure is a bar (0.987 atmosphere), and that both the MKS unit,
Pa = N/m? = 107°b, and the cgs unit, dyne/cm? = 10~ ®b, are very small. The high
pressure units in Table 1 are convenient for high explosives such as TNT.

In general the fluid equation are not invariant under an arbitrary change of units
unless the equation of state is also transformed; P/(V',E’) = P(V,E). This is be-
cause EOS parameters typical have dimensions. However, an ideal gas equation of state,

P = (v — 1)pE, has no dimensional parameters. It has the special property that it is

Lecture 1.2 -5 Lecture 1.2
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MKS units high pressure units
length m mm cm
time S s 1S
mass kg mg g
derived units
force N (Newton) kN 102 dynes = 10° N
energy | J(Joule) J 10" ergs = 10°J

fluid variables

p kg/m? mg/mm? = 103 kg /m? g/cm® =103 kg/m?
u m/s mm/ps = 10°m/s em/ps = 10* m/s
E J/kg J/mg = 10°J/kg Mb - cm3/g = 10% J/kg
P Pa (Pascal = N/m?) GPa = 10° Pa Mb = 10" Pa

Table I: Compatible units for fluid flow variables.

invariant under the general scale transformation

N

' =ux/L (W = (t/0)u

t'=t/r » and { E' = (7/0)*E

p'=Cp/n | P'= (£7%/p)p

\
for any positive ¢, 7 and p corresponding to the choice of units for length, time or mass.
Therefore, the Euler equations with an ideal gas EOS are invariant under an arbitrary
change of units. As a consequence, in this special case, the fluid equations have non-
trivial similarity solutions. Two important similarity solutions are the Taylor-Sedov
blast wave and the Guderley converging shock; see for example [Whitham, 1974] Sec. 6.16,
or [Zel’dovich & Raizer, 1966] chpt. XII.

Entropy is an important physical quantity. Its time evolution can be derived from
Euler’s equations as follows. Substituting the first component into the third component of

Eq. (1.6), the energy equation is equivalent to

(d/dt)E = —P(d/dt)V . (1.7)

Lecture 1.2 —6— Lecture 1.2
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Comparing with the fundamental thermodynamic identity

dE = —PdV + TdS , (1.8)

where

T= temperature,

S= specific entropy,

we deduce that the energy equation is equivalent to

(d/dt)S =0 . (1.9)

Hence, entropy is constant along particle paths. This implies that the flow is adiabatic;
i.e., there is no heat transfer between fluid elements. Moreover, for a smooth flow of an

ideal fluid there is no dissipation. In the next lecture we will see that dissipation is required

when smooth solutions break down. Furthermore, the needed dissipation leads to the loss

of time reversal invariance for weak solutions.

1.3 Characteristic Equations

For an isentrope (constant entropy)
dE/dV = —P(V,E). (1.10)

Hence along a particle path the pressure is a function of only one variable, P = Pg(V).

Therefore, for smooth flow the derivative of p can be replaced with the derivative of P
1
(d/dt)p = —(d/dt)P, (1.11)
c
where the sound speed c is defined by

62 = 3P/8p|5 = —V2 8P/8V\3
= -V? (0P/OV|g + O0E/0V|s-0P/OE|y)
= V% (-0P/0V|g + P-0P/OE|y) (1.12)

Lecture 1.2 —7— Lecture 1.3
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Thermodynamic stability requires that the isentropic compressibility is positive, and im-
plies that ¢ > 0. Shortly, we will see that this is both a necessary and sufficient condition
for the fluid equations to be hyperbolic.

Weak disturbances (acoustic waves) propagate at the sound speed. This can be seen

by linearizing the fluid equations. The substitutions

p=potop,
P=P,+46P,
u=0u,

into the fluid equations results to leading order in the wave equation
(0%/0t* + 0% /0z*) 6P =0 .

Thus, the wave speeds for the linearized equations of a stationary fluid are +c.

Substituting Eq. (1.11) into Eq. (1.6) leads to the characteristic form of the fluid

equations:
%S:O, where (d/dt) = 0 + w0y ;
Ld p @0, where (d/di) =9 D
Edt—+ +dt—+u_ , where (d/dtT) = 0 + (u+ ¢)0y; (1.13)
idti_]?_ dti_UZO’ where (d/dt™) = 0y + (u — ¢)0s -

For a general system of quasi-linear hyperbolic PDEs, the characteristic form is equivalent

to Eq. (1.5a). Hence for the fluid equations, the three characteristic velocities are

A=u—c, u, utc. (1.13a)

Thus, the thermodynamic constraint, ¢2 > 0, implies that the fluid equations are hyper-
bolic. The characteristics velocities A = u + ¢ are associated with acoustic waves, and the
characteristic velocity A = u with a particle trajectory. Acoustic waves propagate, relative

to the fluid, at the sound speed.

Lecture 1.3 -8 Lecture 1.3
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For homentropic flow (S = constant, independent of z and t), the characteristic equa-

tions can be simplified by introducing the Riemann invariants

R, = ui/ dP/(pc)

S=constant

v
= u:F/ pcdV (1.14)
S=constant
The PDEs then reduce to the ODEs:
R, = constant, on dz/dt=u+c;
(1.15)

R_ = constant, ondz/dt=u—c.

For non-homentropic flow, the characteristic equations (1.13) imply that for each charac-

teristic the fluid variables satisfy a constraint called a compatibility relation:

S = constant, on dz/dt = u;
dP/du = —pc, on dz/dt =u+ c; (1.16)

dP/du = pc, ondz/dt =u—c.

As an example of these concepts, consider an ideal gas EOS, PV = (y — 1) E where
v > 1. The important quantities that have been introduced can be computed analytically

and are given by (see Ex. 1.5):

2 =~PV ;
P/Py = (Vy/V)Y, for S = constant; (1.17)
Ry =u+ c.
v—1

We have noted that ¢ > 0 and the characteristic form implies that the fluid equations
are hyperbolic. When ¢? > 0, the eigenvalues are distinct and the fluid equations are
strictly hyperbolic. The sound speed can only vanish (i) when V' — oo at the interface of
the free expansion of a gas into a vacuum, or (ii) due to a phase transition at the triple point.

In addition, geometric source terms for quasi one-dimensional flow (e.g., cylindrical or

Lecture 1.3 -9- Lecture 1.3
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u—cC u+c

Influence

FIGURE 1.1

Domain of influence and range of dependence.

spherical converging flow, see, Ex. 1.2 and 1.3) have the effect of an additional characteristic
velocity. Resonant wave phenomena can occur when characteristic velocities coincide; see
e.g., [Friedman, 1961] and [Isasaacson & Temple, 1992]. For other systems, the loss of strict
hyperbolicity results in additional complications to the wave structure; see e.g., [Isaacson
et al., 1988].

The characteristic form of the equations have several important implications:

1. The characteristic equations reduce the PDEs to coupled ODEs and are the basis of
numerical algorithms for computing smooth flows, method of characteristics. For
homentropic flow, the Riemann invariants can be used as coordinates. In this case the
method of characteristics is particularly simple and is capable of giving very accurate
solutions. When characteristics cross, smooth solutions break down and shock waves
are formed.

2. Acoustic signals propagate along characteristics. The finite wave speeds lead to the
concepts of a domain of influence and a range of effect, see Fig. 1.1. We note
that the same concepts occur in relativity. The speed of light is the analog of the
characteristic speed, the domain of influence corresponds to the backward light cone

and the range of effect to the forward light cone. Moreover, spacelike points are

Lecture 1.3 10— Lecture 1.3
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independent of each other. For numerical algorithms, the domain of influence leads to
a time step limitation. When violated, explicit algorithms may become unstable and
implicit algorithms may loss accuracy. Conversely, an unnecessarily small time step
may lead to excessive numerical diffusion.

3. The flow of information along characteristics determines the boundary conditions
required for a well-posed initial value problem. One quantity may be specified at a
boundary for each characteristic propagating into the computational region. Thus,
the number of boundary conditions ranges from 0, for supersonic flow out of the
domain, upto 3 for supersonic flow into the domain. Because the characteristics
depend on the flow, the number of conditions may not be the same at all boundaries.
Furthermore, at a given boundary the number of conditions can vary in time. As
an example, consider a converging-diverging nozzle. For subsonic flow at the nozzle
entrance, two conditions are required. If the flow remains subsonic throughout the
nozzle, one boundary condition is required at the exit. On the other hand, if the nozzle
flow is transonic then the flow is supersonic at the nozzle exit and no conditions are
needed. For supersonic flow into the nozzle, three conditions are required at the
nozzle entrance. If the flow into the nozzle chokes then a shock wave forms and
propagates out the nozzle entrance. The flow becomes subsonic and the number of
boundary conditions at the nozzle entrance is reduced to two. Boundary conditions
incompatible with the flow leads to numerical errors generated at the boundary and

propagating into the interior of the computational domain.

For smooth flows, the three forms of the fluid equations are equivalent. Neither the
Euler equations nor the characteristic equations are suitable for dealing with discontinuous
solutions. In this course, we focus on the non-linear wave structure of compressible fluid
flow. For this purpose the conservation form of the equations is crucial. The conservation

form is also the basis for numerical algorithms that accurately describe shock waves.

General references:
1. [Courant & Friedrichs, 1948|
2. [Garabedean, 1986] chpt. 2

Lecture 1.3 11— Lecture 1.3



Lecture 1 Compressible Fluid Equations Lecture 1

Exercises

The integral form of the conservation laws for fluid flow in 3-D are

d
Zlave o+ f dA 7 - (pid) =0 (1E.1)
dt Jo 20
L ay pu + f dAn - (pi® U — o) =0 (1E.2)
dt Jo a0
d
pr de(%uz-i—E)-i—]{ dAn-(p(3u*+E)i—0o-i+q)=0 (1E.3)
Q Q

for an arbitrary region (2, with surface 02 and outward normal 7,
where 4 is the velocity, the stress tensor is
o=-Pl+o (1E.4)

with viscous stress o’ and the heat flux is ¢ For Newtonian fluids, the viscous stress is

expressed in terms of the deformation tensor D = 2[V@ + (V)] as
o' =2nD - YsTr(D)I|+£Tr (D) T, (1E.5)

where 7 is the coefficient of shear viscosity and ¢ is the coefficient of bulk viscosity,
and the heat flux is

¢=—rVT, (1E.6)
where « is coefficient of thermal conductivity.

A) Derive the equivalent differential equations for the conservation laws. The integral
form of the conservation laws are clearly independent of the choice of coordinates. What

is the manifestation of this invariance for the differential equations?

B) Is an incomplete EOS sufficient? Are the PDEs hyperbolic?
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C) For incompressible flow, V - @ = 0, and constant viscosity coefficient 7, show that the

momentum equation reduces to the Navier-Stokes equation
i+ (4-V)i=—-——VP+vVii, (LE.7)
p

where v = n/p is the kinematic viscosity.

D) Show that the equation for entropy is

pT(d/dt)S =T -V -¢q, (1E.8)
or in conservation form
AN ) vT|?
. I - 1E.
0(pS)+V (pSu-I—T) T +K 7| (1E.9)

where
T= ;'kDJ'k = % U[(Dll — D23)? + (D2g — D33)* + (D33 — D11)2}
+4n (D3 + D33+ D3;) + € (D + Doz + D3)* . (LE.10)

When the coefficients 7, & and s are positive show that T > 0, and hence the total

irreversible entropy (dS > dQ/T) can only increase.

For cylindrically or spherically symmetric flow, show that the 3-D fluid equations,

with radial velocity component u, reduce to

p pu pu
Oy pU + 0, pu® + P = —% pu? (1E.11)
p(3u? + E) p(3u? + E+ PV)u p(3u? + E+ PV)u

where a = 0, 1, 2 for planar, cylindrical and spherical geometry.
A) Do the source terms affect the entropy, i.e., is dE/dt = —PdV/dt ?
B) Do the source terms affect the characteristic velocities?

C) Do the source terms affect the Riemann invariants?
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For a duct with cross sectional area A, show that the 1-D fluid flow equations are

pA pAu 0
Oy pAu + 0, pAu? + PA = | PO, A (1E.12)
pA(zu® + E) pA(Gu? + E+ PV)u —P0O A

With A = 2% and a = 0, 1, 2, show that the duct flow equations are equivalent to the 1-D
fluid flow equations for planar, cylindrical and spherical geometry.
Let the Lagrangian mass coordinate be defined by dm = pdzx.

A) Show that
(0, +udy)m =0 . (1E.13)

Moreover, under the transformation (x,t) — (m,7) with 7 = ¢ show that

0y = pOpm,
(1E.14)
Ot +ud, = 0r
B) Derive the 1-D fluid flow equations in Lagrangian coordinates
|4 —u
O, u +0,| P | =0, (1LE.15)
%uz +F Pu
with the auxiliary equation
Orx(m,7)=u . (1E.16)

C) Show that the characteristic velocities are A = 0, £pc.

Along an isentrope for an ideal gas, P = (y — 1)E/V, show that
A) P(p) = (p/po)" Po.
B) ¢ =vPV = (p/po)" " cj -
P _ _2
D) Suppose E = C,T, where the specific heat C, is constant. Show that the specific

entropy is

PV7
= . 1E.1
S=C,ln (P()VO’Y) + So ( 7)

EXERCISES 1 —14— EXERCISES 1
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Consider a right facing simple wave: § is constant and the left Riemann invariant
Ry =u— [ dP/(pc) is constant.

A) Show that u + c is a function of the right Riemann invariant R, = u+ [ dP/(pc) and

hence the right propagating characteristic is a straight line in the z—¢ plane.

B) Show that a right facing simple wave has the form u = F(£), where £ = z — A(€) ¢t and

A(€) = u + ¢ with F' an arbitrary function.

C) Show that a shock forms, d,u = oo, if 1 + X't = 0.

Now consider a semi-infinite shock tube, 0 < z < oo, bounded on the left by a piston
and containing a fluid with an ideal gas EOS. Suppose the fluid is initially at rest and at

t = 0 the piston starts moving to the right with constant acceleration, a.

D) Show that the right facing characteristics first cross at t = -2+ - <@
¥+1 a

E) Show that a shock forms ahead of the piston a distance Az = poa i

Consider a fluid layer of thickness Axz. Suppose the fluid is initially at rest and is
accelerated by a pressure imposed at its boundary. Show that a shock will form in the

layer if the boundary pressure grows faster than

P (pc)z. dP
dt = poAz d(pc)|g

(1E.18)

Consider a semi-infinite shock tube, —o0c < x < 0, bounded on the right with a
movable piston. Suppose the piston can be treated as a mass layer with mass per unit area
M, and the fluid has an ideal gas EOS. If the fluid is initially at rest show that the piston

velocity is given by

U(§) = 72201 [1 - 5_(3_3)} ; (1E.19)
where
€t) =1+ (7;1) . (”3\‘;? . (1E.20)
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Consider steady-state flow.

A) Derive Bernoulli’s relation
3 u? + E + PV = constant . (1E.21)

B) For an ideal gas EOS, show that Bernoulli’s relation can be written as

1 1
L2 — 2= %(%)ci . (1E.22)

Furthermore, show that the flow is supersonic when u > ¢, and subsonic when u < c¢,.
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Solutions

The integral form expresses the physical conservation laws for mass, momentum and
energy. Each conservation law is the sum of two terms: (i) the time derivative of a density
and (ii) the surface integral of a flux. Numerical algorithms based on control volumes

use the integral form of the conservation laws.

A) Since the volume Q is time independent

(d/dt)/Qde:/QdV()tf. (18.1)

The surface integral can be replaced by a volume integral using the divergence theorem

fmdA(ﬁ-F*):/dvv-F“. (15.2)

Q

Since the integral vanishes for all €2, the integrand must also vanish. This leads to the

differential fluid equations in conservative form

Op + V - (pi) =0, (15.3)
0¢(pl) + V-(pi®iu+ PI) =V-o, (15.4)
O(p(3u*+E))+ V- (p(3v*+E)i+Pi) =V (o' -0—7q) . (15.5)

Under change of coordinates, the velocity transforms as a vector and the momentum flux as
a tensor. Hence, using tensor calculus the differential form of the conservation laws can be
converted from cartesian coordinates into any desired coordinate system; see e.g., FEx. 1.2.
For a detailed analysis of the tensorial nature of the fluid equations see e.g., [Aris, 1989,

or in modern differential geometry notation see e.g., [Marsden & Hugehes, 1983].
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For later use, we note that the equations can be written in terms of the convective
derivative (d/dt) = 0;+ ii- V. In addition, subtracting off a multiple of the mass equation

from the momentum and energy equations lead to the equations

(d/dt)p=—pV -4, (15.6)
p(d/dt) (@) = -VP+V-o, (18.7)
p(d/dt) (Au*>+E)=-V-(P@)+V (o' -@)—-V-7. (15.8)

B) The heat flux is specified in terms of the temperature. Hence, an incomplete EOS
is not sufficient when heat diffusion is important. With viscosity and heat conduction
included, the fluid equations are parabolic. However, when the coefficients are small, heat
conduction and viscosity only have a large effect for steep gradients. In the next lecture
it is shown when short length scales are not of interest that the steep gradients can be
accounted for by the Hugoniot jump conditions for shock waves. Consequently, on the
time scale of interest for may applications the motion of a fluid is well approximated by

weak solutions to the hyperbolic PDEs for ideal fluid flow.

C) The form of the momentum equations derived at the end of part A is
p(0s+u-V)i=-VP+V-o'. (15.9)

When 7 and & are constants, the viscous contribution to the momentum equation can be
expressed as

V.o =qV2ii+ (E+ Yan) V(V - i) . (15.10)

In the incompressible case, the V - @ terms drop out and the momentum equation reduces
to

p(Oy+@-V)id=—-VP+nV3i. (15.11)
Dividing by p leads to the standard form of the Navier-Stokes equation.
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D) The momentum and energy equations derived at the end of part A are

p(d/dt)d + VP =V.o, (15.12)

p(d/dt) 3u* +E)+V-(Pi@)=V-(¢'-@)—V-7. (18.13)
Multiplying the momentum equation by # and subtracting from the energy equation gives
p(d/dt)E+ PV -i=V-(¢'-d)—(V-0')-4—V-7. (15.14)

Eliminating V - 4 using the mass equation and substituting p = 1/V yields
p|(d/dt)E + P(d/dt)V| =V (o' @) — (V-0') - a—V-7. (15.15)

Using the thermodynamic identity TdS = dE + PdV, Eq. (1E.8) follows by substituting

for o/ and straight forward but tedious algebraic manipulations to show that
V-(o'-i)—=(V-o') - ti=0;;0mu;="T. (15.16)

The conservation form of the entropy equation follows from mass conservation and the

algebraic identity

V- (@/T)=(V-9)/T~(q-VT)/T?

= (V-Q)/T +|VT/T|” . (15.17)

In conservation form we note that there is both a reversible change in entropy from the
heat flux dQ/T = V- (¢/T) and an irreversible entropy change from the dissipation. There
is a contribution to the dissipation from both viscous stresses T /T and heat conduction
KJ‘VT/T|2. The dissipation increases entropy since it is the sum of squares and hence

positive definite.
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The tensor form of the differential equations for the conservation laws derived in
Ex. 1.1A are invariant under coordinate transformation. Furthermore, if the flow is ini-
tially radial symmetric and the boundary conditions are radially symmetric then the flow
remains radially symmetric. Therefore, to derive the equations for cylindrical or spheri-
cal symmetric flow, we may assume the velocity has the form @ = wu(r,t) 7. First, let us

consider spherically symmetric flow. In spherical coordinates

N

V =70, + gag + 9y , (15.18)

7 sin @

where 0 is the polar angle and ¢ is the azimuthal angle. We note as a result of the curved

coordinates that

8,7 =0, 0pf =0, and O4F =sinf¢ . (15.19)

Hence,

V-(ur) = (Vu) - 7+u(V-7)=0ru+2u/r. (15.20)

Using these relations it is straight forward algebra to transform the 3-D equations. For

example, the momentum flux is

= (0pp) u’F + p (V- (uf)) ui + p (ud;) (ut)
2

= (BT (pu2) + ;pu2>f . (15.21)

In addition,

V(PI) = VP = (8,P)7 . (15.22)

Thus, the effect of spherical coordinates on the flux is merely to add geometrical source
terms proportional to 2/r. Similarly, in cylindrical geometry one excludes the contribution
from 047 and the additional terms from the flux are proportional to 1/r. For planar

symmetry, there are no additional terms since the coordinates are not curved.
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A) In Ex. 1.1D, the time derivative of the entropy was derived for the 3-D equations.
Since cylindrical and spherical symmetry flow are a reduction of the 3-D equations, with-
out dissipation terms smooth flows conserve entropy. Hence, for both cylindrically and

spherically symmetric flow (d/dt)E = —P(d/dt)V .

B) Going through the analogous algebraic transformation for the characteristics merely

adds geometric source terms

d

%S =0, where (d/dt) = 0y + u0y ; (15.23)
1 d d o
_—P _ = —— h + = z' ]_ .24
e dit +dt+u —uc, where (d/dt™) =0y + (u+¢)0y ; (15.24)
1 d d o
e di e —uc, Where (d/dt=) =0y + (u—c)0 (15.25)

Thus, the geometric source terms do not affect the characteristic velocities.

C) Due to the source terms, even for isentropic flow, the Riemann invariants are not
constant on characteristics. In particular, rarefaction waves, which are described in the
next lecture, can no longer be scale invariant. The method of characteristics can still be
applied, but the contribution from the source terms must be included in the compatibility

relations.

Duct flow is a quasi 1-D approximation in which the leading order 2-D effects are
accounted for by the variation in cross sectional area of the stream tube. The conserved

quantities of mass, momentum and energy are given by

mass = /dzAp , (15.26)
momentum = /dz Apu , (15.27)
energy = /dz Ap (3v* + E) . (15.28)

Therefore, the mass per unit length or pA rather than p is the relevant quantity which

enters into the conservation form on the left hand side of the equations. In addition, the
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duct wall adds momentum PJ,A and energy —P0d; A to the fluid. These appear as source
terms on the right hand side of Eq. (1E.12).

The cross sectional area for planar, cylindrically and spherically symmetric flow is
proportional to z* with a = 0,1 and 2 respectively. In this case, 0;A = 0. Applying the
derivative rule to the product in the flux and dividing the equation by A leads to the 1-D
fluid equations with a geometric source term proportional to 0,A/A = «/z. The source

terms are exactly the same as derived in Ex. 1.2.
The mass coordinate is defined by

m(z,t) = / p(z,t)dx | (15.29)
$0(t)

where zy(t) is the trajectory of a reference particle which initially at ¢ = 0 is at z = z.

A)

T

(0r + udy) m(z,t) = / Opp(w,t) dw — (dxo(t)/dt) p(xo(t), 1) + (up) (z,t)  (15.30)

) (t)

By mass conservation

/ Oip(z,t) de = — / 0z (pu) dz
xo (t) To (t)

= —(pu) (1) + (pu) (2 (2), ) - (15.31)
From the definition of a particle trajectory
(d/dt)xo(t) = u(zo(t),t) . (15.32)
Combining these equations we find
(0¢ + w0z )m(z,t) =0 . (15.33)

Under the transformation (x,t) — (m, 7) with

T=1
(15.34)
m = m(z,t)

Eq. (1E.14) follows immediately.

SOLUTIONS 1 —22— SOLUTIONS 1



Lecture 1 Compressible Fluid Equations Lecture 1

B) From the definition p = V1
(d/dt)p = —V=2(d/dt)V . (15.35)

Substituting Eq. (1E.14) into the Euler equations, Eq. (1.6), leads to the Lagrangian
form of the fluid equations. The auxiliary equation, 0,x(m,7) = u follows from the
transformation and corresponds to a particle trajectory. The Lagrangian equations are
convenient for analysis. However, in numerical computations it is important that mass be
exactly conserved. Usually, the equation for 0,z is used in place of the equation for 0,V

and V is calculated for each cell as a finite difference V = Az/Am.

C) Using the transformation in part B, the characteristic equations, Eq. (1.13) are trans-

formed to

9,5 =0, (15.36)
i(& + pcOm) P + (07 + pcdpm)u =0, (18.37)
i((’% — pc@m)P — (8T — pc@m)u =0. (15.38)

Thus, the characteristic velocities are A = 0, +pc. In effect, the particle trajectory corre-

sponds to A = 0. Moreover, the Lagrangian sound speed is pc.

A) An isentrope is defined by Eq. (1.10). Applied to the ideal equation of state we

have

dE = —PdV | (15.39)
dE/E = —(y—1)dV/V | (15.40)
E(V)/Ey = (V/Vo)~0 V. (15.41)

Then using the EOS to replace £ with P we obtain

P(V)/Po= (Vo/V)" = (p/p0)” - (15.42)
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B) From Eq. (1.12) and part A

62 = 8pP|5

= (p/po)" PoV

=~PV . (15.43)
Hence (¢/c)? = E/Ey and from part A it follows that
2= (p/po)" tch. (15.44)

Without computing P(V)) on the isentrope, the sound speed can also be obtained by

applying the relation ¢ = V2 (—0y P|g + POgP|y) directly to the EOS.

C)

/ dP/(pc) = / dp (9,P)s (pe)~!
:/dPC/p=/dpcop%(v—:a)/p(%wﬂ)

=[2/(y-1)]c. (15.45)
Hence the Riemann invariants are
Ry=u=x[2/(y—1)]c. (15.46)

D) Substituting C, T = E = PV/(y — 1) into the thermodynamic identity TdS = dE +

PdV we find

ds = Cv(d?P + ydvv) = Cydln(PV") . (15.47)

Integrating then gives S as a function of P and V.
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Note, the right and left Riemann invariants correspond to Ry and R_ in Eq. (1.15).

A) Take the sum and difference of the Riemann invariants

R.+Ry=2u, (15.48)

Ry — Ry =2 / 4P/ (pc) | (18.49)

Two quantities determine the thermodynamic state. When S is constant, [ dP/(pc) deter-
mines the state. Therefore, R,., Ry and S completely determine the hydrodynamic state.
For a right facing simple wave Ry and S are constant. Therefore, the state of the wave is
a function of only R,. From the characteristic equation, R, is constant along the curve
dz/dt = u + c. Since u + ¢ is a function of R,., it is constant along a right propagating

characteristic. Hence, each right facing characteristic is a straight line.

B) By part A, all fluid variables are functions of R, and are constant along a right facing
characteristic. Let us parametrize the right facing characteristics by £ = = — A(R,)t,
where A = u + ¢. Since £ is in a one-one correspondence with R, we can parametrize the
simple wave with the variable £. Then all the variables are functions of £. In particular,

the characteristic speed A(§) and the particle velocity u = F'(§).

C) By part B, £ =2 — A(§) t. Hence,

0u6 =1 (2:0(6) )t
=1-X-(8,6)t, (18.50)

where X' = d\/d{. Therefore,
0.6 =1/(1+ A1) . (18.51)

The derivative of the particle velocity is
Opu=F'o,6 =F'[(1+ \) . (15.52)

Hence, smooth solutions break down d,u = oo if 1 + At = 0.
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D) The strategy is to determine the velocity, F'(¢) in part B, from the piston boundary
condition, and then apply the criterion in part C. From Ex 1.5 C, the left Riemann invariant

is u — 2¢/(y — 1). Hence,

c=co+3(y—-1u. (15.53)

On the piston trajectory
z = iat”, (15.54)
u=at, (15.55)

A=ut+c=c+i(r+1)u

=co+1(y+1)at, (15.56)
E=x— At
= —1vat® — cot . (15.57)

We note that A > ¢g and £ < 0 for ¢ > 0. Moreover, both A and ¢ are monotonic and

hence £(A) is a well defined function. Eliminating ¢, we find A and ¢ are related by

2
7[)\—00] CO[A—CO] _
L2 + 2 S| +¢e=0. (1S.58)
20 [;(y+1)]  alz(y+1)
Taking the derivative we find
d€ 2 co 2y
—=————|1+4 ——A/cp—=1)| . 15.59
dX 7+1a[+7+1(/co )] ( )

From part C, 0,u = oo and the characteristics first cross at a time

t, = min(—d{/dX) . 15.60
in (—d¢/dA) (15.60)
The minimization is necessary because one doesn’t know a priori which characteristics are

the first to cross. The minimum is achieved at A, = ¢ and t,. = % . %0 .
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E) From part D, the characteristic first crosses at A, = ¢p which corresponds to &, = 0.

The characteristic cross at a position

2 c?

Suppose the pressure is imposed on the left boundary. Then the flow is a right facing

(15.61)

simple wave as in Ex. 1.6. As an alternative to the approach used in Ex. 1.6 D, a geometric
approach based on the crossing of characteristics in the Lagrangian mass coordinate of
Ex. 1.4 is used to determine if a shock will form. We can assume the fluid layer corresponds
to the interval 0 < m < pgAx. In mass coordinates the characteristic velocity is A = pc.
It follows in an analogous manner to Ex. 1.6 A that the right propagating characteristics
are straight lines in the m—t plane. Therefore, the characteristic launched at the boundary

at time o is given by

m(to,t) = A(to) - (t — to) - (15.62)
The characteristics cross when
g—:’: ~0. (15.63)
This occurs at
%:t—toz%. (15.64)
The characteristics cross within the fluid layer if
po Az >m = A/N . (15.65)
Since a simple wave is isentropic
d(pc dpP
N = ;’1’3) s (15.66)

Hence the characteristic cross and a shock forms within the fluid layer if the pressure

increases sufficiently fast
dP _ (pc)? dP
dt = poAz d(pc)|g
We note that after the lead characteristic reaches the right boundary of the fluid layer then

(18.67)

the left Riemann invariant is no longer constant and the condition above breaks down. A
similar arguments implies that a compressive wave propagating into a uniform fluid will
steepen and form a shock in a finite time. Hence, the occurrence of shock waves are a

general property of compressible fluid flow.
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The right Riemann invariant is a constant. By Ex 1.5C
c=co—3(-1u. (15.68)

From Ex 1.5 A & B,

(c/co)® = (P/Py)™5 . (15.69)

Hence, the piston velocity determines its pressure

2y

PU)=v""pocg[L = 3 (v = 1) U/eo] T . (15.70)

Newton’s law for the piston is

o ) 15.71
M—- = P(U) (15.71)
Hence
U oqu
= 72
L= M/ el (18.72)

This can be integrated analytically and determines U as a function of time. Note that the
asymptotic velocity U — 2¢o/(7y — 1) is finite. Thus, the sound speed as well as the total

fluid energy can limit the achievable piston velocity.

A) For steady-state flow, the conservation form of the fluid equations reduce to

pu
O pu® + P =0. (15.73)
pu-(3u?+ E+ PV)

The first component implies that the mass flux pu is constant. Therefore, the third com-

ponent reduces to

(2w +E+PV)=0.

This implies Bernoulli’s function, % u? + E 4 PV is a constant.
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B) For an ideal gas, from Eq. (1.17) we can express the enthalpy as

H=PV+E=PV[1+1/(y-1)]

—yPV/(7-1)

=c?/(y-1). (15.74)

It follows that 3 u? + E + PV is postive and Eq. (LE.21) can be expressed as Eq. (1E.22).

From Eq. (1E.22), the flow is sonic when

Since ¢ decreases as u increases, it follows for supersonic flow that
c<c <u,

and for subsonic flow that

U< cy <c.
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Lecture 2

Wave Structure

The fluid equations have the form of a hyperbolic system of conservation laws

Oy + O, F (@) =10 , (1.3)
or .
8, + DF(w) - 0,0 = 0 . (1.3a)

An important property of hyperbolic PDEs is the wave structure of its solutions. Elemen-
tary waves can be used as building blocks to understand and analyze the general solutions.
Because the PDEs are scale invariant (z' = z/a and ' = t/«a), the elementary waves
are scale invariant. Moreover, shock waves and their interactions are especially important
because they represent the most singular part of a solution. We briefly outline the gen-
eral theory for the elementary waves and then use the fluid equations as an example to
illustrate the non-linear wave structure of quasi-linear hyperbolic PDEs.

For each eigenvalue of DF, there is one wave family. A wave family can be of two
types: linearly degenerate if

(R-Va)A=0, (2.1)

where A is an eigenvalue and R is the corresponding right eigenvector; otherwise linearly
non-degenerate. For each non-degenerate wave family there are 2 types of elementary
waves; (i) a continuous simple wave called a rarefaction and (ii) a discontinuous wave called
a shock. For each degenerate wave family there is 1 type of wave called a contact.

For the fluid equations we show that the acoustic wave families (A = u %+ ¢) are non-

degenerate, and the wave family corresponding to the particle trajectory (A = u) is linearly
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degenerate. The density of the conserved quantities (mass, momentum and energy) in the
fluid equations (1.1) are

7= (p, M, &),

where M = pu and € = p(F + 3u?). The flux function
F = (pu, pu®+ P, [3u® + E + PV] pu)T

can be expressed in terms of #. Rather than perform the straight forward but tedious
algebraic computation of DF = Vs F and its eigenvectors (see Ex. 2.1), we will make use
of the characteristic form of the fluid equations (1.13).

It is natural to use the primitive variables
- T
q= (V7 E7 U) ’

and to consider w to be a function of ¢. The transformation between w and ¢ is non-
singular, and may be regarded as a change of basis. Using the chain rule, Eq. (1.3a) is
transformed to

0,7+ DF -9,7=0, (2.2a)
where

DF’' = (Vzw)~! - DF - (Va0) , (2.2b)
and

(Vq)ij = Ow,4; -

It follows that DF’ and DF have the same eigenvalues, and that the left and right eigen-

vectors are related by

and
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Moreover,

(Ri-Va)Ni= (R;- Vg \i .

Therefore, the linear degenerate nature of a wave family is not changed by the transfor-

mation. Furthermore, eq. (1.5a) can be rewritten as
L (8 4+ Xi8,) T=0 . (2.3)

The left eigenvectors follow from the characteristic equations. Comparing Eqgs. (1.13)

and (2.3), and using the thermodynamic relations

TdS = PdV +dE
and
dP = (0y P)dV + (0gP)dE

where Oy P = g—€| g and OgP = g—g\v, we find that the left eigenvectors are proportional

to
. —2
L, ==(P, 1, 0),
pc
I —i(aVPaP c) (2.4)
u+c_2pc y ORL7, P ’ -
I —i(apap —c)
u—c_2pc vi, VEL, P )

The normalization has been chosen such that

L’/

T T _
u—c'Lu XLu—i—c_l .

The right eigenvectors are the duals to the left eigenvectors. Therefore,

R_ = I xL;+c:—( 1, P, —pc) ,
pc
B o= -0 xIl. =" (_ogp, ovP, 0 ) (2.5)
u - u—c utc — 2/)0 EL, Vv, ’ .
Y _ il il _ i . T
R, .. L, . xL, = 1, P, pc

pc
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We can now use Eq. (2.1) to determine the degeneracy of the wave families. For A = u,

we have

R’,lu . Vq“u = —(8EP)8V + (6VP)8E U

1
2pc
=0. (2.6)

Hence, A = u is linearly degenerate. For A = u + ¢, we have

- 1
wie Vilutec) = = [—8V + POg + pc@u} (u+c)

B 1 Oc| 1 0(pc)
=1 pc OV|g ¢ Op |g (2.7a)
Similarly,
~ 1\ 9(pc
R;_C-V(;(u—c):—(z> g; )| (2.7b)
s

Because p?0,(pc)?|s = 03 P|s, the right hand side of Eq. (2.7) only vanishes at inflection
points of the isentropes in the P—V plane. Therefore, for a convex EOS the acoustic wave
families are always non-degenerate. The more general case of a non-convex EOS will be
discussed in Lecture 4.

Thus, we have classified the wave families for the fluid equations. Next the elemen-
tary waves are described. The two types of elementary waves for the acoustic modes;
rarefactions and shocks are analyzed separately.

Remark 2.1: Transformations other than those of the form ¢ = ¢(w) are useful. In
particular, the Lagrangian mass coordinate (see Ex. 1.4)
P
dm = pdz or m(x,t) :/ p(z,t)dx
o (t)
is a transformation of the co-ordinate z that depends on the variable w. For the fluid
equations, in Ex. 2.1 it is shown that the wave families are of the same type in either

Lagrangian or Eulerian co-ordinates. Transformation that change the wave type can not

preserve the isomorphism between solutions.
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2.1 Continuous Simple Waves

The scale invariant continuous waves are a type of simple wave known as a centered

rarefaction. They can be constructed as follows. Let
E=z/t and @(z,t) = k(). (2.8)
The scale invariant form for a solution reduces the PDEs (1.3a) to ODEs

O4h(€) + DF - 9,h(¢) =0

1 dh -
Z(DF —€¢I)-— =0 2.9
[ (DF —¢1)- (29)
where I is the unit matrix. The only solutions of this equation are of the form
&= Xi(h) and pr; =n(h) R;(h) , (2.10)

where n is a normalization factor for the eigenfunction. Hence, a rarefaction curve is
tangent to the right eigenfunction. For strictly hyperbolic PDEs, by continuity & and
h are well defined; i.e., as h varies, there is no ambiguity from the crossing of eigenvalues.
The fluid equations are strictly hyperbolic when the sound speed is non-zero.

The eigenvalues are a function of h. Thus, Eq. (2.10) implies & = X\;(h(¢)). For the

solution to be consistent

dh
1= (d/dé))\; = d_§ - Vi
This determines the normalization factor
nt=R; -V . (2.11)

Hence, a rarefaction wave can be constructed only for a linearly non-degenerate wave
family. Moreover, the rarefaction curve is only a single valued function of x and ¢ when
restricted to the region in which the characteristic velocity varies monotonically.

A wave family that is everywhere linearly non-degenerate is called genuinely non-
linear. A genuinely non-linear wave family has the property that the characteristic velocity
is monotonic along the entire rarefaction curve. For the fluid equations, Eq. (2.7) implies
the acoustic wave families are genuinely non-linear when the isentropes in the V-P plane

are convex.
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The rarefaction waves can also be derived from the characteristic form of the equations.

By substituting Eq. (2.8) into the characteristic form of the fluid equations (1.13) we find

ds
(u+c—¢&)- (%4—,003—;) =0, (2.12)

(u—c—§)- (%— cj—?) =0.

One factor in each equation must vanish. The non-trivial solutions are given by £ =u=£c
and a sequence of 2 quadratures: (i) dS = 0, which is equivalent to dE = —PdV, deter-
mines the thermodynamic state on an isentrope; and then (ii) du = +dP/pc determines
the velocity. The second quadrature can be performed after the first because along an
isentrope all the thermodynamic quantities (in particular P, p and c¢) are a function of
one variable. Thus, for a rarefaction wave, the entropy and one of the Riemann invariants
Eq. (1.14) are constant.

Using the variable o = V' to parameterize the rarefaction curve, the two quadratures

can be expressed as the ODEs

d |4 -1
—|E|=| P |=rc R ... (2.13)
U +pc

Except for the parameterization this is equivalent to Eq. (2.10). Moreover, the variation
of the characteristic velocity along the rarefaction curve d(u £ ¢)/da is readily computed.
This again shows that the acoustic wave families are genuinely non-linear when the EOS
is convex.

Suppose one tries to construct a simple wave solution corresponding to the linearly
degenerate eigenvalue; i.e., £ = u. Since u + ¢ — & # 0, it follows from Eq. (2.12) that
P; = 0 and u¢ = 0. Hence P = constant, u = constant and Sg o< 6(§ — &p). Therefore, the

solution has a discontinuity in S along x/t = u. This is called contact.
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FIGURE 2.1

Characteristics in the z—t plane for a right facing rarefaction wave. The shaded
area is the rarefaction fan. The solid lines correspond to characteristics u + ¢ and
the dashed lines to characteristics u — c. The dotted line is a particle trajectory.

In the z—t plane, for a centered rarefaction all variables (in particular, P, p and u)
are constant along either the rays z/t = u + ¢ for a right facing wave or z/t = u — ¢ for
a left facing wave. Particle trajectories flow into a right facing wave from the right, and
the left Riemann invariant is constant; i.e., R_ in Eq. (1.14). Similarly for a left facing
wave particle trajectories flow in from the left and the right Riemann invariant is constant;
ie,, Ry in Eq. (1.14). A rarefaction wave can be parameterized by either the characteristic
velocity or the corresponding Riemann invariant; i.e., for a right facing rarefaction either
xz/t = u+ cor Ry, and similarly for a left facing rarefaction.

For the standard case of a convex EOS, discussed later in more detail, when a scale
invariant simple wave overtakes a particle its density decreases. Hence, the name rarefac-
tion wave. Rarefaction waves spread out in time. In the z—t plane, both characteristic
families for a right facing rarefaction wave are shown in Fig. 2.1. In this case, the forward

characteristics (u+c) are straight lines but the backward characteristics (u—c) are curved.
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A rarefaction can be joined together with a region of constant state. We note two
properties of such a composite solution: (i) The edge (leading or trailing) of the rarefaction
travels at the characteristic velocity, and (ii) At the edge of the rarefaction the derivatives
of the solution are discontinuous. This is an example of a general property of hyperbolic
PDEs, namely, weak singularities (discontinuities in derivatives) are possible but can
only propagate along a characteristic.

As an illustrative example, for an ideal gas EOS we derive the wave profile of a
rarefaction centered about the point z = 0, ¢ = 0. For a right facing rarefaction, the left

Riemann invariant is constant. From Eq. (1.17)

2
v—1

CZRL.

A right facing rarefaction can be parameterized by the variable

E=z/t=u+c.

Combining these two equation we obtain

2 v—1
=l

Because the entropy for a rarefaction wave is constant, it follows that the other thermo-

dynamic variables are determined by the sound speed. From Eq. (1.17), we obtain

_2
p(&) = [c(€)/co] T - po ,
P(&) = [e(€)/co] T - Py -
For an ideal gas EOS, the profiles at a fixed time (z = {t) of either u or ¢ are linear in z.

Using the relation
dz d§

e )
dt dt+£’
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the backwards characteristic can be determined analytically by integrating the equation
dz/dt = u — c. Within the rarefaction fan, the backwards characteristic is given by

2(y—1)

z/t = Ry, + [0 — Rr] - (to/t) +1

Similarly, the particle trajectory is given by
—1
o/t =Ry + [ — Ru) - (to/t) 77 .

We note, if the rarefaction extends to a vacuum (P = 0) then for all three characteristics
x/t — Ry, as t — oo and Ry, corresponds to the escape velocity.

The fluid equations are time reversal invariant, i.e., invariant under ¢ — —t and
u — —u. Applying time reversal to a rarefaction wave leads to a compressive wave. How-
ever, for a compressive wave the characteristics focus and cross in a finite time leading to a
singularity; see Exs. 1.6 and 1.7. A shock wave, which we discuss next, is a regularization
of the singularity. The regularization (or physical admissible shock waves) breaks the time

reversal invariance of the equations.

2.2 Discontinuous Shock Waves

Scale invariant solutions can also be piecewise constant. A discontinuous solution
is known as a shock wave. Let o be the wave speed of the discontinuity. The jumps
of the variables across the discontinuity are not arbitrary. The conservation form of the
fluid equations leads to constraints known as the Rankine-Hugoniot jump conditions.
These can be derives as follows: (i) Assume a traveling wave solution; i.e., p = p(z — ot),
etc. (ii) Then 0/0; = —00/0,. (iii) Integrating Eq. (1.1) across the wave front, from the
ahead state at z( to the behind state at z; (relative to the shock front, ahead is

upstream and behind is downstream), we find

Alp(u—o0)] =0, (2.14a)
Alpu(u—0o)+ Pl =0, (2.14b)
Alp(3u*+ E)(u—0)+ Pu] =0, (2.14c¢)

where A[f] = f(x1) — f(zo) is the jump of the quantity f across the shock wave.
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Remark 2.2: Shocks waves can be thought of as weak solutions, in the sense of a dis-
tribution, to hyperbolic PDEs. Because of the non-linear nature of the flux function,
the only sensible distributions are step discontinuities. Constraints on the weak solu-
tions can be derived by integrating the PDEs with a test function and then integrating
by parts over the regions between discontinuities. To satisfy the equations for an arbi-
trary test function, discontinuities in a weak solution must satisfy the Rankine-Hugoniot
jump conditions. There is also the notion of a solution in the sense of a measure valued
function. This extension of distributions allows for non-linear functions. However, the

physical meaning of such solutions is not clear.

The fluid equations are Galilean invariant. Consequently, the jump conditions should

be a function of only velocity differences. Linear combinations of Eq. (2.14) lead to

Alp(u—o0)] =0, (2.15a)
Alp(u—0o)(u—0)+P]=0, (2.15b)
Alp(R(u—0)’+E)(u—0)+Pu—0)]=0. (2.15¢)

The momentum equation (2.15b) is Eq. (2.14b) — o x Eq. (2.14a), and the energy equa-
tion (2.15¢) is Eq. (2.14c) — 3 0 x [Eq. (2.14b) + Eq. (2.15b)].

The mass flux through the discontinuity is given by
m=p-(c—u). (2.16)

The mass flux can be thought of as parameterizing the strength of the shock wave. (In
Lagrangian mass coordinates, see Ex. 1.4, the mass flux is the wave speed.) When m > 0,
streamlines enter the discontinuity from the right and the discontinuity is called a right
facing shock wave; i.e., upstream is on the right side of the front, r1— < z¢+. Right

facing waves are associated with the characteristic A = u 4 ¢. Similar when m < 0, the
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discontinuity is called a left facing shock wave and are associated with the characteristic

A =u — c¢. Using m to eliminate u reduces Eq. (2.15) to

1.

2.

m = constant , (2.17a)
Al[Vm?+ P] =0, (2.17b)
m-A[f(mV)?+E+PV]=0. (2.17¢)

There are two cases to consider:
m = 0.

There is no flux through the discontinuity. It follows from Eq. (2.16) that o = u and
hence Afu] = 0, and from Eq. (2.15b) that A[P] = 0. This wave corresponds to the
linearly degenerate eigenvalue and is called a contact. It has the property that P and u
are continuous but S and p may be discontinuous. The same contact wave was obtained
when we tried to construct a simple wave from the linearly degenerate eigenvalue using
the characteristic equations.

Contacts can also represent material interfaces. This allows the fluid equations
to be generalized to more than one material. We simply add an index n to the EOS,
P(V,E) — P,(V, E), and the equation (d/dt) n = 0 to specify that the index is convected
with the material. The continuity of presure and particle velocity across a material
interface is a consequence of the conservation laws. It is not an arbitrary assumption,
but is an approximation valid when other physical effects such as surface tension can be

neglected.

m # 0.

From the momentum jump condition, Eq. (2.17b), we find

AP
2 —_—
m* = v (2.18)
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This implies that AP and AV have the opposite sign; i.e., if P increases then V decreases,
and vice versa. For later use we note that Egs. (2.16) and (2.18) can be combined to

give the important relation
2 2
[po (o — uo)} = [pl (o — ul)} = —-AP/AV . (2.19)
The energy jump condition can be simplified using the algebraic identity
A[AB]=AAB+ BAA, (2.20)

where f = % (fo + f1) is the average of the quantity f across the shock. In particular,

from Egs. (2.18) and (2.20)
I m?A[V?] =m?V AV

=—-VAP.

Substituting this into Eq. (2.17c) we find

AH =V AP, (2.21)

where H = E + PV is the enthalpy.
Applying the algebraic identity to the left hand side we obtain the Hugoniot equa-
tion

AE=-PAV . (2.22)

Finally, from Eqs. (2.14b), (2.16) and (2.18) we find
Au = +V_APAV , (2.23)
where + corresponds to a right facing wave (m > 0) and — to a left facing wave (m < 0).

It is important to note that from a solution to the Hugoniot equation, the wave speed

is determined by Eq. (2.19) and the particle velocity by Eq. (2.23). Hence, a shock wave
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is completely determined by the EOS. This is a consequence of the Galilean invariance of
the fluid equations.

For a given ahead state (subscript 0), there is a continuous 1-parameter family of
shock waves for each linearly non-degenerate eigenvalue (A = u + ¢). Because of the
symmetry of the fluid equations under x — —zx, there is a correspondence between left
and right facing shock waves with the same |m/|; the thermodynamic state is the same
but Aujery = —Auright. The possible thermodynamic states behind a shock wave is called
the Hugoniot locus. The Hugoniot locus is determined by the EOS, from the Hugoniot
equation, Eq. (2.22). It depends on the thermodynamic part of the ahead state but is
independent of both the ahead velocity and the wave family. Frequently, the Hugoniot
locus is projected onto the P-V plane. As an example, the Hugoniot locus for an ideal
gas (see Ex. 2.7) is shown in the P-V plane in Fig. 2.2 and in the o—u plane in Fig. 2.3.

There is striking similarity between the equations for a shock wave and a rarefaction

wave when they are written in the form

AE/AV =-P +«— dE/dV|s=-P, (2.24q)

AP/Au=p(c —u) <+— dP/du|s=*pc. (2.24b)

Equation (2.24a) is important for finite difference algorithms using artificial viscosity and
Equation (2.24b) is important for Godunov algorithms using Riemann solvers.

Next we derive two important results for weak shocks, m ~ 0. The following lemmas
imply that in the limit of weak shock waves the shock relations in Eq. (2.24) for shocks do
indeed correspond to the relations for rarefactions.

Lemma 2.3: In a neighborhood of a state 0, the Hugoniot equation has a unique solution

that can be parameterized by V. Furthermore, for weak shocks, AS = O((AV)3).
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FIGURE 2.2

Loci in the P-V plane for an ideal gas v = 5/3. The solid line is shock Hugoniot,
the dotted line is the asymptotic strong shock limit, and the dashed line is an
isentrope.
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FIGURE 2.3

Loci in (shock velocity)—(particle velocity) plane for an ideal gas with v = 5/5.
The solid line is shock Hugoniot, and the dashed line is the asymptotic strong
shock limit.
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Proof: Thermodynamic state space can be parametrized by V and S. From Eq. (2.22),
the Hugoniot locus based at state 0, corresponds to the zero level set of the Hugoniot

function

hV,S)=E(V,S)—Ey+ 3 |P(V,S)+ Py| - (V- Vp) . (2.25)

Using the thermodynamic identity dE = —P dV + T'dS the differential of h can be ex-
pressed as

dh=TdS+ 1 (V-Vy)dP -} (P—Py)dV . (2.26)

At the initial state, dsh = T > 0. By the implicit value theorem, there exists a small
neighborhood about (Vj, Sp) in which the zero level set of the Hugoniot function is given
by a curve S, (V). We denote the pressure on the Hugoniot locus by P, (V) = P(V, Si(V)).
The derivatives of S along the Hugoniot locus can be evaluated by taking the deriva-
tives of the equation h(V, S, (V)) = 0. From Eq. (2.26), the first derivative of the Hugoniot
function gives
dss, dpPy,

20 = (P~ Ro) + (Vo - V) "t . (2.27)

Evaluating at V = Vj, we find that (d/dV) S,(Vp) = 0. Taking the second derivative of

the Hugoniot function gives

d*p,
av? -’

d%Sy, 2dTh dSh

2T
dV2+ av. dV

=W-V) (2.28)

Evaluating at V = Vj, we find that (d/dV)2S,(V,) = 0. Taking the third derivative of the

Hugoniot function gives

Evaluating at V' =V}, we find that
2725 (1) = Ly
(R B2 Y P s)
= —%‘S(VO,SO) : (2.30)
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The leading order term in the Taylor expansion for Sp, (V) then gives

1 d3S;,

3
AS == =3 - (AV)
1 9?P 3
=T o, (AV)~. (2.31)
X X

Lemma 2.4: As the mass flux m — 0, the wave speed o — u £ c.

Proof: From Egs. (2.19)

['00.(0—110)}2 = —2—5 .

As V — Vj the right hand side approaches 0/0. Applying ’'Hospital’s rule we obtain

d
(po - (o — ug))” — — 7 Pu(h) eV =T

From the previous lemma,
dPy/dV (Vo) = (Ov + S10s)P(Vo, So)
= Oy Pls = —(poco)” .
Therefore, 0 — ug — £cp. The plus sign is for right facing waves and the minus sign for

left facing waves.

X X

From these lemmas it follows that (i) the limit of weak shocks are acoustic waves, and
that (ii) mass, momentum, energy and entropy can not simultaneously be conserved across
a shock wave. Discontinuous waves with AS = 0 are natural from the characteristic form of
the fluid equations. However, these would be valid weak solutions only when the entropy
equation is used in place of the energy equation. We note, when Riemann introduced
the concept of characteristics, he mistakenly assumed entropy rather than energy was

conserved across a shock wave.
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2.3 Entropy Condition

Even with the restriction that mass, momentum and energy are conserved, there are
too many shock waves. A consequence of too many waves is that the initial value problem
does not have a unique weak solution. Physically, one need to take into account dissipative
effects that smooth out or regularize discontinuities. With viscosity and heat conduction,

the fluid equations become (see Ex. 1.1 A)

Ocp + 0z (pu) =0 (2.32a)
Ot (pu) + 0z (pu® + P) = 0z (10 u) (2.320)

Oy (p (2u® + E)) + 0y (p (A’ +E+ PV)) = Oy (pudyu) + 0,(k0,T)  (2.32¢)

where p > 0 is the coefficient of dynamic viscosity and x > 0 is the coefficient of thermal

conductivity. It follow that the entropy satisfies (see Ex. 1.1D)

""%T) a (2.33)

= —(0,u)? + m(

foar ()

04(p8) + 0. pus — =

Hence, the total entropy is increasing; i.e., viscosity and heat conduction are each dissipa-
tive processes.

Let us consider a steady-state left facing wave in the shock-attached frame. The PDEs
then reduce to a system of ODEs for the shock profile. The ODEs have first integrals and

can be reduced to the pair of first order equations

av

— = J[P +m? 2.34
mp— J[P 4+ m*V] (2.34a)
Kk dT
— = J[E - Im®V? + V(P + m*Vj)] (2.34b)

where m = pu > 0 is the mass flux and J[f] = f(z) — f(—oc) is the change in the quantity
f from its initial value ahead of the shock. For a fixed shock strength, mass flux m, these
ODEs have two important properties:

(i) The critical points of the ODEs, at which all derivatives vanish, correspond to points

on the Hugoniot locus. Furthermore, for the standard case of a convex EOS, it can be
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shown from a phase plane analysis that a shock profile exists if and only if the final

state has a higher entropy than the initial state; see e.g., [Menikoff & Plohr, 1989,

Appendix C].

(ii) If 4 — 0 and k — 0 with a fixed ratio u/k = constant, then the shock profile scales
and in the limit converges to a discontinuous shock. In particular, when g and &
are sufficiently small, viscosity and heat conduction are only significant in the shock
profile where the spatial derivatives of u and T are large.

For the standard case, this leads to the important conclusion that the initial and final
states do not depend on the detailed nature of the dissipation; i.e., the magnitude of the
coefficients of either viscosity or heat conduction. Moreover, the physical dissipation for
fluid flow can be accounted for by the Hugoniot jump conditions and the choice of admis-
sible shocks, even though there is no explicit source of dissipation (entropy production) in
the ideal fluid equations.

The physical width of a shock wave can be very narrow, typically, on the order of
a mean free path; e.g., in air at sea level, on the order of 107°cm. Usually this very
short length scale is neither important nor of interest. Hence, for many applications the
hyperbolic PDEs of ideal fluid flow are used because the weak solutions with the correct
shock waves (conserving mass, momentum and energy, and entropy increasing) are a very
good approximation for the underlying physics.

In the standard case of a convex EOS, only compressive shocks are consistent with the
thermodynamic condition that entropy increases. In this case, the condition that entropy
increases is sufficient to obtain a unique physical solution to the initial value problem.
Because shock waves are associated with dissipative processes, the non-uniqueness of weak
solutions is resolved by breaking the time reversal invariance of the ideal fluid equations.
All other invariances of the fluid equations are maintained for shock waves. In particular,
the Hugoniot jump relations are Galilean invariant.

The entropy condition is important for numerical algorithms. Some form of artificial

numerical dissipation is the basis for shock capturing algorithms. The physical entropy
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increasing shock waves also correspond to the mathematically stable shock waves: If a
compressive shock is perturbed, the characteristics refocus into a shock wave. On the
other hand, if an expansive shock is smeared out then the characteristics diverge and the
discontinuity is unstable. Non-uniqueness of weak solutions for a general EOS will be
discussed later in more detail. For a non-convex EOS the entropy condition is necessary

but not sufficient for uniqueness.

2.4 Characteristic Condition

Another important property of a shock wave that will be derived in Lecture 4 is the

Lax characteristic condition

(u~+ ¢)behind > @ > (U +¢) head » for right facing wave; (2.35a)

(v = S)pehind <7 < (¥ =€) head » for left facing wave. (2.35b)

The characteristic condition is needed for 1-D shock stability. It ensures the correct num-
ber of degrees of freedom to determine uniquely the interaction of a shock wave with an
acoustic wave. This interaction must be accounted for in numerical algorithms in order
to obtain the correct time dependence for the propagation of a shock wave. Schematically
the characteristics in the z—t plane relative to the shock front are shown in Fig. 2.4.

A shock wave has 7 degrees of freedom; 3 variables for the ahead state, 3 variables for
the behind state, and the wave speed. The characteristic condition implies that there are
three incoming characteristics ahead of the shock and one incoming characteristic behind
the shock. The three ahead characteristic determine the three variables of the ahead state.
The conservation laws provide three jump conditions across the shock. Together with the
ahead state, the jump conditions determine a one parameter family of possible states be-
hind the shock (Hugoniot locus). An additional condition is needed to determine the shock
strength. The incoming characteristic behind the shock provides the remaining informa-

tion. The two outgoing characteristic are determined from the incoming characteristics
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FIGURE 2.4

Characteristics in the z—t plane for left and right facing shock wave relative to the
shock front. Dashed line is shock front, solid lines are incoming characteristics
and dotted lines are outgoing characteristics.

and provides the boundary information for the region behind the shock. This mechanism
is the basis for shock tracking algorithms.

The characteristic condition has the interpretation that relative to the shock front,
the flow is subsonic behind and supersonic ahead. For either a right or left facing

shock wave
|0 — tlpehind < Cbehind 224 Cahead < |7 — ulghead - (2.36)

Hence, for two waves of the same family, the second will catch up with and interacts with
the first. This provides a non-linear stability for shock waves which is important for shock
capturing algorithms. If a shock wave is perturbed or smeared out into a compressive
wave, then the focusing of characteristics will steepen the profile forming discontinuities.

The initial perturbation or the compressive wave profile determines the order in which
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the characteristics will cross. When the characteristic speed varies monotonically within
a compressive wave profile, after a transient, the discontinuities will coalesce and reform
the initial shock wave. A convex EOS has this property, and in this case all compressive
shock waves are stable. For a non-convex EOS, the characteristic speed does not vary
monotonically and a shock wave can split into a composite of two shocks separated by
a compression wave. Stability of shock waves is the basis for the Oleinik-Liu extended
entropy condition.

The variation of the characteristic speeds is important for numerical algorithms. For
linearly non-degenerate waves, the focusing of characteristics stablizes numerical shock
waves. For a linearly degenerate wave, this stabilization is lacking and a numerical contact
tends to be diffusive rather than remaining a sharp discontinuity. Artificial compression
algorithms modify the linearly degenerate characteristics in order to counteract the nu-
merical diffusion of contacts.

For two shocks of the same family, if the region between the two shocks is not uniform
then the characteristic condition does not imply that the trailing shock will alway catch
up with the lead shock. This is illustrated by the following examples: (i) N-wave or shock-
rarefaction-shock; e.g., sonic boom. Both shocks interact with the rarefaction causing the
N-wave to decay. As it decays the N—wave spreads out and the two shocks separate rather
than approaching. (ii) Geometric source terms for quasi 1-D flow; e.g., subsonic flow into
a converging-diverging nozzle can be transonic. Stable flows exist with two shock waves of
the same family; one shock propagating ahead of the nozzle and a second stationary shock
in the diverging section of the nozzle.

Finally, we remark that a region of constant state must be bounded by either a simple
wave or a shock wave. In applications, the ambient state is usually constant. This simple

observation can be quite useful in constructing solutions; see e.g., Exs. 1.6 C&D, 1.7 and 1.8.

General references:
1. [Courant & Friedrichs, 1948|
2. [Lax, 1957, 1972]
3. [Smoller, 1983] chpts. 15-18
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Exercises

For the fluid equations in Lagrangian coordinates (Ex. 1.4):
A) Compute DF, and its eigenvalues and eigenfunctions.

B) From the eigenfunction of DF determine the state, parametrized by V', along a right
facing rarefaction.

Compared to Eulerian coordinates:
C) Are the characteristic velocities the same?
D) Is the linearly degenerate and non-degenerate nature of the wave families the same?
E) Are the Hugoniot jump conditions the same?

F) For smooth solutions show that the equation for conservation of energy can be replaced
by the equation for conservation of entropy. Does conservation form of the PDEs uniquely

determine weak solutions?

@ For the cylindrically or spherically symmetric fluid equations (Ex. 1.2) or the duct
flow equations (Ex. 1.3):

A) Are the Hugoniot jump conditions affected by the source terms?

B) Are simple waves affected by the source terms?

A) Prove that the planar fluid equations are Galilean invariant.

B) Are the cylindrically or spherically symmetric fluid equations (Ex. 1.2) Galilean in-

variant?

C) What other symmetries do the fluid equations satisfy?
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Consider an ideal gas EOS, P = (y — 1)E/V.

A) For a right facing rarefaction (£ = u + ¢), show that the state parameterized by V is

given by
P/Py=V/V)" (2E.1)
c/co = (Vo/V)201—1) (2E.2)
’U,:’U,()+’Y_1(C—C()) (2E3)

B) Show that the limiting or escape velocity is ug — %co.
C) Do simple waves have to be centered rarefactions? Hint, consider Ex. 1.8.

@ For given compression ratio, is the pressure higher for a single shock or multiple

shocks or isentropic compression?

Let o be the shock velocity, u the particle velocity, and the subscripts 0 and 1 denote

the state ahead and behind the shock. From the Hugoniot jump conditions prove:

A)

AP = po(u1 — Uo) (0’ — ’U,()) . (2E4)

Moreover, for the ‘lab’ frame (ug = 0), show that in the strong shock limit (large o)
Py — poupus (2E.5)

where u, is the shock velocity and u, is the particle velocity behind the shock.

B)
AP/Ap = (0 —up) (0 —uq) . (2FE.6)

C)
AE =1 (Au)+ Py (Vo— Vi) - (2E.7)
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Moreover, for the ‘lab’ frame, show that in the strong shock limit
(2E.8)

D) For a frame co-moving with the shock front (o = 0), also known as the ‘shock attached

frame’, show that Bernoulli’s function is constant; i.e.,
A[E+ PV +1u?=0. (2E.9)

Let o be the shock velocity, u the particle velocity, and the subscripts 0 and 1 denote
the state ahead and behind the shock. Consider an ideal gas EOS, P = (y — 1)E/V, and

assume the initial state is at rest, i.e., ug = 0.

A) Show that the state behind a shock, parameterized by the shock Mach number M =

o/co > 1, is given by

(y+1)M?
= 2E.1
PI/PO (7—1)M2+2 ’ ( 0)
PPy =1+ 20 . (M>—1) (2E.11)
v+1 ’
2y—1) (M2-1
(c1/co)? = Ey)Eo = 1+ (x 1)3 ! — ) (yM2+1) . (2E.12)
2 M2-1
- . 2F.13

Show that all these quantities vary monotonically with the shock strength.

Comment on the scale invariance of the shock Hugoniot for an ideal gas.
B) Show that the entropy is monotonically increasing with shock strength.
C) Behind the shock show that the flow is subsonic relative to the front.

D) Are the Riemann invariants constant across a shock? What implications does this

have for the method of characteristics?
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E) In the strong shock limit, M > 1, show that
v+1

=1 - 2F.14
p1 ~—1 Po ( )
=2 2 (2E.15)
1= ~ +1 Poo :
_ 2 (2E.16)
Uy = ~ T 1 g, .
1
2 - 1))
B Calv/und) gy (2E.17)
y+1
Ey = 1u} . (2E.18)
Why is the maximum shock compression ratio finite?
F) Show that
AP/Au = po(o — uo)
1
vy+1 AP\|?
— |~P 1 S ) 2E.19
[’Y 0P0 ( + > P ( )
In addition, for a weak shock
poo = 5(p1c1 + poco) + O ((AP)?) . (2E.20)

These formulae are the basis for some Riemann solvers.

G) Suppose a strong shock reflects from a rigid wall, ie., u,, = 0. Show that

1

the reflected shock corresponds to a Mach number in part (A) of M,, = <%)§

and that the state behind the reflected shock (with o, in the Lab frame) is

gl
prs/p1 = ST (2E.21)
2y
Prs/Pr=1+ —=, (2E.22)
fY p—
3y—1
(cro/c1)? = Eyy /By = 77 , (2E.23)
vy—1
0'7-3/0'1 = —2 m . (2E.24)

Is the reflected shock a strong shock, why not?
Since the reflected shock stagnates the flow, why is F,.s > %u% +FE, =2FE 7
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A point on the shock Hugoniot is specified by the initial state and one additional
parameter, either the shock velocity or a single quantity behind the shock. For an arbitrary
EOS, devise an algorithm to find a Hugoniot point with a specified shock pressure that is

no more complicated than an iterative solution of one algebraic equation in one variable.

Consider a steady state isentropic flow.

A) Show that Bernoulli’s function is constant, i.e.,

W+ E+PV =14+ /dP/p = constant . (2E.25)
B) Show that

dp/p=—(u/c)du/c . (2FE.26)

Hence, if Awu is comparable to ¢ then compressibility is important. The converse is not

necessarily true.

C) For an ideal gas show that

2

u® + ¢ = constant, . (2E.27)

Why is this different from the Riemann invariants for simple waves?

Consider the shock profile in the steady-state frame for an ideal gas with viscosity

but no heat conduction.

A) For a left facing wave show that V is determined by the equation

R R I UM Oy (25.28)

where m = po is the mass flux.

B) Show that the solution is given by

Volog(Vo = V) = Vilog(V — V1)
- Vo - Va '
C) Show that V (z) defined by Eq. (2E.29) satisfies the appropriate boundary conditions.

Liy—1)2g (2E.29)
1
How are the other variables determined?

D) Show for any reasonable definition of the shock width, such as the distance be-
tween 10% and 90% of the value of the profile at the end points or AV/(dV/dx)max,
the width approaches 0 in the strong shock limit.
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Solutions
For Lagrangian coordinates the conserved quantities are
@ =V, u, )T, (25.1)
where £ = %UZ + FE, and the flux functions are
F = (—u, P, uP)", (25.2)

where P(@) = P(V, & — su?).

A) By straightforward differentiation

0 -1 0
DF = PV —’LLPE PE' s (253)
uPy P—u?Pg uPg

where Py = 0y P|g and Py = OgP|yv. The eigenvalues are determined by the equation
det(DF —AXI) = \* — (=Py + P-Pp)A=0. (25.4)
By Eq. (1.12), (pc)?> = —Py + P Pg, and the characteristic velocities are
A= —pc, 0, pc. (25.5)

The corresponding matrix of eigenvectors is

1 Pg 1
R = pc 0 —pc . (25.6)
—P+pcu —Py —P—pcu

B) A right facing wave is associated with the characteristic A = pc. From Eq. (2S.6) the

corresponding right eigenfunction of DF is

Ry =, —pc, =P — pcu)T . (25.7)
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Even though the eigenfunction is not normalized according to Eq. (2.11), it follows from

Eq. (2.10) that

(d/dv)u=RP /R = —pc, (25.8a)
SUu” + = =—FP —pcu. 25.8
d/dv) (3u® + E) = RY /R = —P 5.8b

These two equations can be combined to give
(d/dV)E = —P . (25.8b")

These differential equations imply that the left Riemann invariant, Eq. (1.14), and the

entropy, Eq. (1.10), are constant.

C) The characteristic velocities in Eulerian coordinates, Eq. (1.13a), are not the same
as in Lagrangian coordinates, Eq. (2S.5). Thus, the characteristic velocities depend on
the co-ordinates; i.e., (z,t) or (m,t). In fact the characteristic velocities have different

dimensions in the two co-ordinate systems.

D) The Lagrangian particle trajectory corresponds to A = 0 and is clearly a linearly
degenerate mode. For the acoustic modes, A1 = +pc, we find
— 1
(Ri : Vw) )\i = :l:2— 8V + pcau — (P + pcu)ag . BVP|S(V,5 - %u2)
pc

1

1
=+—0yPls . 25.9
30 Ps (25.9)
Hence, the acoustic modes are linearly non-degenerate except at inflection points of the

isentrope in the P-V plane; i.e., 03 P|s = 0. We note that

1 2 _ 1 2 2
2p63VP|S = 2pcav(pc) ls = p"0p(pc)|s -

Therefore, the degeneracy condition is the same in Lagrangian coordinates, Eq. (2S.9),

and in Eulerian coordinates, Eq. (2.7).
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E) The Lagrangian wave speed is the mass flux through the shock front, m = p(o — u),

which is equivalent to Eq. (2.17a). From Eq. (1E.15) the Lagrangian jump conditions are

AlmV +u] =0, (25.10a)
Al-mu+ P]=0, (25.100)
Al-m(iu*+ E)+ Pu]=0. (25.10c)

Egs. (2S.10b) and (2S.10c) are equivalent to Egs. (2.14b) and (2.14c). Egs. (2S.10b)
and (2.17b) imply Eq. (2S.10a). Therefore, the Hugoniot jump conditions in Lagrangian

and Eulerian coordinates are equivalent.

F) Fluid flow in Lagrangian coordinates is determined by Eq. (1E.15). Multiplying the

momentum equation by u and subtracting from the energy equation gives

HE + POpu=0. (25.11)

Substituting for d,,u from the mass equation yields

0= 0,E + PO,V =TS . (25.12)

Thus, for smooth solutions the fluid equations can be written in conservation form as

|4 —u
Ol u|+0n| P |=0. (25.13)
S 0

This would lead to jump conditions for shocks in which conservation of energy, Eq. (2S.10c)

is replaced by conservation of entropy

AlmS]=0 . (25.14)

Therefore, the conservative form and the corresponding weak solutions of the PDEs are

not unique.

SOLUTIONS 2 -59- SOLUTIONS 2



Lecture 2 Wave Structure Lecture 2

@l A) The Hugoniot jump conditions are derived by integrating the equations from
ahead of the shock zy to behind the shock x;. In the limit zg — z4 and z; — z_, the
derivative of a discontinuous function contributes but the source functions do not. Hence
the jump conditions for planar, cylindrical and spherical geometry are the same. For duct
flow, the cross sectional area A is continuous and factors out of the jump conditions. Hence

the jump conditions for duct flow are the standard fluid jump conditions.

B) For the planar fluid equations, a simple wave is a function of one Riemann invari-
ant. The other Riemann invariant and the entropy are constants. Source terms in the
characteristic equations, compare Eq. (1.13) and Egs. (1S.23)-(1S.25), affect the Riemann
invariants. Therefore, simple waves are affected by source terms. Furthermore, source
terms imply additional length or time scales. Consequently, centered rarefactions can not

be scale invariant when the equations have source terms.

A) In Euler’s equations (1.6) u enters only through d,u or the convective derivative
d/dt = 0y + ud,. These combinations are invariant under a Galilean transformation:

¥ =x+upt,t' =t and v = u — uyg.

B) In cylindrical or spherical geometry, due to the source terms in Eq. (1E.11) the origin

is a distinguished point, and the PDEs are not Galilean invariant.

C) The fluid equations are also invariant under: (i) scale transformations z’ = z/a,
t' = t/a and v = w; (ii) parity 2’ = —z, t' = t and v/ = —u; and (iii) time reversal
invariance 2’ = z, t' = —t, v’ = u. However, shock waves and hence weak solutions are

not time reversal invariant.

A) Egs. (2E.1) and (2E.2) follow from Ex. 1.5. For a right facing wave, the left

Riemann invariant is constant. From Ex. 1.5 and Eq. (1.14), we obtain
dP 2
Ro=u— | —=u———c. (25.15)
pc v—1
At the initial state R_ = ug — %co. It follows that Eq. (2E.3) is equivalent to a constant

value of R_.
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B) From Eq. (2E.2), when an ideal gas expands isentropically, the sound speed decreases.
The minimum sound speed of ¢ = 0 corresponds to V' — oco. From Eq. (2E.3) the velocity
decreases with c. Hence, the minimum value of u is ug — %co. The typical case has
ug = 0. Thus, v < 0 and its minimum value has the maximum magnitude. This is called
the escape velocity. If a piston is withdrawn from a tube faster than the escape speed,
then the gas can not keep up and a vacuum forms in front of the piston. This is known as
cavitation. It is named after the pits (or cavities) that damage propeller blades on ocean

going ships. The pits result from a water jet impacting the propeller blade. The jet is

formed when a gas bubble in the water collapses. The gas bubble is due to cavitation.

C) Simple waves have a constant value of S and one Riemann invariant. The character-
istics corresponding to the other Riemann invariant are straight lines in the x—t plane,
Ex. 1.6 A. Only if all the characteristics in the backwards direction intersect in point is the
simple wave a centered rarefaction. Ex. 1.8 is an example of a non-centered rarefaction.
In addition, simple waves can correspond to compressive waves, Exs. 1.6 and 1.7. In this

case, the characteristics eventually cross and a shock will form in a finite time.

The limit of multiple weak shocks is an isentropic compression. For most materials in
most of phase space, dg P|y > 0. In this case, for a fixed compression ratio, multiple shocks
have a lower pressure since the entropy in the final state is lower. Isentropic compression

would give the minimum pressure.

A) From Egs. (2.16), (2.18) and (2.23) it follows that
AP = mAu
= po (0 — uo) (u1 — up) -
In the ‘lab’ frame when the ambient fluid is at rest, ug = 0, this relation can be expressed

as

P1:P0+p0upus . (2316)
In the strong shock limit, Py is negligible and may be neglected.
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B) From Eq. (2.16)
m:PO(U—Uo) :p1(U—U1) )

and from Eq. (2.18)

AV
AP
po (0 = ug) - p1 (0 —uy) = Vo — V4
AP AP

(o= u0)- (o ~m)= pop1 (Vo — V1) - Ap -

C) From Egs. (2.22) and (2.23)
AE = —%APAV—I—PO (Vo — V1)
=1(Aaw)’+ P (Vo — V1) .
In the strong shock limit, Ey and the term proportional to Py are negligible. Consequently,
in the ‘lab’ frame, the energy in the strong shock limit reduces to Eq. (2E.8). Thus, in the

strong shock limit, the internal energy and kinetic energy become equal.

D) For smooth steady-state flows, Bernoulli’s function £ + PV + %u2 is a constant,
Ex. 1.9A. Eq. (2E.9) is the statement that Bernoulli’s function is also a constant when a
shock wave is stationary; i.e., the frame in which the shock front is at rest. This follows
from Egs. (2.16) and (2.17c) with ¢ = 0. Eq. (2E.9) is an important relation for steady

supersonic flows with shock waves.

A) From Egs. (2.16) and (2.18) the mass flux is determined by
AP
YPoM? Vo = (poo)? =m? = —— . (25.17)
AV
Thus, M is proportional to the mass flux and parameterizes the shock strength. The strat-
egy for determining the shock state is to substitute the EOS into the Hugoniot equation,

Eq. (2.22), and then express P; and V; in terms of AP and AV

(PiVL = PoVo)/(y—=1) = AE = 5 (Po + P1) (Vo — V1) ,

APAV + P)AV + VAP = —4 (v = 1)APAV — (y = 1) BAV

AP VoAP

%(’Y"‘l)?o = -

=y(M?-1). (25.18)

2
|
fas
P>
<

This is equivalent to Eq. (2E.11).
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Having used the EOS to determine one variable, namely Pj, all the other variables

are determined from the jump conditions. From (2S.17) we find

AP V,AP

—AV = = 25.1
v m2 ’)/P0M2 ’ ( 5 9)
L0 1 AP
1 YM?

po  YM?—AP/Py

Substituting AP/P, from Eq. (2S.18) we obtain Eq. (2E.10).
Having determined P; and Vi, the shock energy follows from the Hugoniot equation

and Eq. (2S.19)

AE =1 (Py+ P1) (Vo— Vi) = —L APAV — RAV

AE AP AV AV

PVo 2P Vo Vo

AE ~—1AP; | AP
- (1+320).
EO ’)’M2 PO P()

Substituting AP/P, from Eq. (2S.18) we obtain Eq. (2E.12).

The velocity is determined from Eq. (2.16)

p1(0 —u1) =m = poo

“i_,_Po
g P1

Substituting pg/p1 from Egs. (2S.20) and (2S.18) we obtain Eq. (2E.13).

Finally, by inspection, the right hand side of Egs. (2E.10)—(2E.13) are monotonically
increase with M.

One can use the values of Py and V to set the scale for pressure and density. More-
over, the sound speed scales; (¢/co)? = (PV)/(PyVy). Because an ideal gas EOS is scale
invariant, the scaled shock Hugoniot is the same for any initial state as is indicated by

Egs. (2E.10) (2E.13).
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B) From Eq. (1E.17), the entropy is given by

S zln[% . (%)7} +Sp .

Since the shock strength is parametrized by M? we examine the derivative

dSy _ zi=(Pi/Py) = (p1/po)

dM? ~—  (P/PR) T (o1/po)

Substituting in Egs. (2E.10) and (2E.11)

_ 1 B B

- —1 2 2
M2——727 M? - M2+ =
1 1 1

= - - (M2 —1)?

2 —1 2 (

M2 M2 -2 M2+ 2

>0, forM?2>1.

Hence S is monotonically increasing with shock strength. We also note that the entropy

increase for weak shocks, M2 > 1, is third order since AP oc M2 — 1.

C) From Eq. (2E.13) the velocity relative to the front is

— -1 2 1
cgTm _ (YT : M.
Cco y+1 ~v+1 M?

From Eq. (2E.12) we find

(2 -5 - B o= (25242)

1 M2
v+l M2

: (7—1)M2+2}

>0, for M2 > 1.

Hence u; + ¢1 > o, and the flow behind the shock is subsonic relative to the front.
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Alternatively, from Egs. (2.16) and (2E.10) we obtain

(0 —uo) - (0 —u1) = (po/p1) - (0 — uo)?
=2(15) e -+ /-1
=c?. (25.21)

This formula is known as Prandtl’s relation. Since we have taken uy = 0, the shock
Mach number M is equivalent to My = (0 — ug)/co and corresponds to the Mach number
of the flow ahead relative to the shock front. It then follows from Exs. 1.9B and 2.6 D that

when My > 1 the Mach number behind M; = (00 —uq)/c1 < 1.

D) For an ideal gas the Riemann invariants are given by (1.17)

Ri=u+

c.
v—1

The change in the invariants across the shock, normalized to the ahead state, is plotted
as a function of the shock pressure in Fig. 2.5 for v = 5/3. Suppose the shock is right
facing. The change in R, is the same as occurs for a compressive simple wave. On the
other hand, the change in R_ would cause the method of characteristics to break down.

However, some tedious algebra shows that to leading order

co  4(y+1

e - (A
Consequently, for weak shocks R_ is nearly constant. Even for moderate strength shocks
(AP/Py < 10), Fig. 2.5 shows that the change in the Riemann invariant is relatively small
(AR_/R_(0) < 25%). This is the basis of a perturbative method for computing flows with
weaks shocks; e.g., the interaction in which a rarefaction overtakes a shock (the decay of
an N-wave). The Riemann invariants and the method of characteristics are discussed in

more detail at the end of Lecture 3.
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FIGURE 2.5

Normalized Riemann invariant, AR/Ry, along shock Hugoniot for v = 5/3. Solid
line is Riemann invariant corresponding to characteristic family of shock and
dashed line is Riemann invariant for the opposite family.

E) As M gets large, it follows from Eqs. (2E.10) and (2E.13) that

pr/po=(v+1)/(y = 1)+ O(1/M?)

up /o =2/(y+1) +0(1/M?)

In the strong shock limit, M — oo, this leads to Egs. (2E.14) and (2E.16). Eq. (2E.15)
is a special case of Eq. (2E.5) and Eq. (2E.18) is a special case of Eq. (2E.8). Substi-
tuting Eqgs. (2E.14) and (2E.15) into the equation for the sound speed ¢ = yP/p yield
Eq. (2E.17). The compression ratio is finite because the thermal expansion from shock

heating is balanced by the shock pressure.

F) Egs. (2E.11) and (2E.13) determine AP/Au as a function of M?2. Substituting from
Eq. (2E.11)

M2=1+_1"""—— 25.22
+ > T ( )

leads to Eq. (2E.19).
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The weak shock limit corresponds to M — 1. From Egs. (2E.10) and (2E.12)

2 2 2 2
p/po =1+ g (M —1)+0((M? - 1)?)

c1/co =1+ z—;i(M2 —1) +O((M2 - 1)2)

Together with Eq. (2E.11) we find

L (poco + prc1) = poco |1+ 3 (M2 = 1)|+O((M? - 1)2)

- a1+ ZELA) Cof(aeymy)

Since this is equivalent to the leading order expansion of Eq. (2E.19), we obtain Eq. (2E.20).
G) Let u, ¢ and M be the velocity, sound speed and Mach number for the reflected shock
in the frame moving with the particle velocity behind the incident shock. The velocity
jump across the reflected shock is equal and opposite to that of the incident shock. From
Egs. (2E.16) and (2E.17) we have

i o = 1) [ 2 } 3
Ur/Co=Ur/C1 = | —F——< .
Y(y—1)
From Eq. (2E.13) we have .
- 2 M?-1
Ul/CO = —Q

y+1 M

Combining these two equation we obtain

1
~ 3
M = (2_7) .
v—1
Substituting M into Egs. (2E.10)~(2E.12) gives Egs. (2E.21)—(2E.23). In the lab frame

the shock velocity is 0,5 = —(¢oM — uy). This yields Eq. (2E.24).
For v = 5/3 the Mach number of the reflected shock is M,.; = /5. The reflected Mach

The solution with M >11is

number is low (moderate strength shock) because the incident shock raises the sound speed.

The fluid behind the incident shock has a velocity and pressure which does work on
the fluid behind the reflected shock. Hence E,; is greater than the stagnation energy
behind the incident shock.
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Given the shock pressure and one other state variable, the shock state is completely
determined by the jump conditions. By substituting the Hugoniot equation for the energy,

Eq. (2.22), into the EOS we obtain an implicit equation for Vj
Py = P(Ve) = P(Va, Fo + § (Po + P) (Vo = V) . (25.23)

In Lecture 4, physical conditions on the EOS are derived in order for Eq. (25.23) to have
a unique solution. In the standard case with P; > Py, it can be shown that V; < V. A

robust means of solving for Vj is to first find a bracket in V' for the solution to Eq. (2S.23).
/% find bracket for zero crossing of function P, — P(V) %/
Vimax = Vo
Vinin = 0.5 % V;
while( Py > P(Vinin) )

{
Vmax = Vmin;
Vmin =0.5* Vrnin;

}
/* Vmin S V:s S Vma,x */

The bracket can then be refined to determine V; as accurately as desired. Given
P, and V; the other variables behind the shock are determined from the following jump

relations:

[po(O' — U())i|2 = —AP/AV
E,=Eo+ 3 (Po+Ps) (Vo= V5)

(Ul — U0)2 = —APAV

A) For steady-state the conservation form of the fluid equations, Eq. (1.1), reduces

to
dr
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Hence the mass flux pu is a constant. Then energy conservation equation implies that the
Bernoulli function E —I—PV+% u? is constant. From the thermodynamic relation, Eq. (1.8),
we find

d(E+ PV)=VdP+TdS .

Hence, for isentropic flow the Bernoulli function is
_E+PV+§U2=§U?+/dRm.
B) The differential of the Bernoulli function gives

0=d(E+ PV + 1u?)
=udu+dP/p
=udu+0,P|sdp/p

dp/p = —(u/c) du/c

Clearly, when Au/c = O(1) the change in density is also Ap/p = O(1) and the fluid can

not be treated as incompressible; i.e., V - @ = 0 is not a good approximation.

C) Using the expression for the sound speed along an isentrope, Eq. (1.17), we find

— [ /ooy d(o/m)

= (p/po)" "¢}/ (v = 1) =c*/(v—1)

Hence by part (A)

u? +

1 ¢ = constant
f)/ —

for isentropic steady flow. Since a simple wave is not steady, for steady flow neither
Riemann invariant is constant and the velocity does not have the same form as a rarefaction,

Eq. (2E.3).
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The shock profile is determined by Eq. (2.34). With zero heat conduction
JIE - 1m?V? 4+ V(Py + m?V;)] = 0

and for an ideal gas EOS

-1
P(V) = _7V Im?V? — (Py+m*Vp) V + (gmzv(f + 5 1 1V0P0)] : (25.24)

Substituting P(V') into Eq. (2.34a) and noting that the numerator is quadratic and vanishes
when the Hugoniot equation is satisfied we obtain Eq. (2E.28).

B) Eq. (2E.28) can be transformed as follows

s(y=1)mz/p= /dV(VYOVO - VYlVl)/(VO -W)

~ Volog(Vo — V) — Vilog(V — V1)
- Vo — Vi

C) As V.V, the right hand side and hence x — —oc. Similarly, as V' \, V7, the
right hand side and hence x — +o00. Therefore, the appropriate boundary conditions
are satisfied and V3 < V(z) < V. Eq. (25.24) determines the pressure profile and mass
conservation the velocity profile. The specific energy profile is determined from the EOS.
Thus, we obtain the shock profile for all the hydrodynamic variables. These are shown in

Fig. 2.6 for v = 9/s.

D) From Ex. 2.7 C, in the strong shock limit V; — [(y—1)/(y+1)]Vy. From part (B), the
profile depends on the combination m x/u. Therefore, for fixed V7 (strong shock limit) the
shock profile gets steeper and the width shrinks with either increasing m or decreasing .
The profile is not physically meaningful when the width is less than the mean free path of

particles in a gas or a fluid.
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Applications of Non-Reactive Compressible Fluids Ralph Menikoff
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Lecture 3

Equation of State and Riemann Problem

The fluid flow equations must be supplemented with an EOS to specify the material
properties of a particular fluid. For a numerical simulation, the EOS should be regarded
as input data. As with any calculation, bad input leads to bad output. Because an EOS
is a function of 2 variables, the question arises as to what is a good EOS. We consider the

qualitative properties a general EOS must satisfy.

3.1 Thermodynamic Constraints on an EOS

One requirement is that the equilibrium EOS be compatible with thermodynamics.
An isentrope is defined for an incomplete EOS, P(V, E), by dE = —PdV. This is sufficient
to specify one important constraint on an EOS. Namely, the adiabatic compressibility is
positive or ¢> = —V2dP/dV|s > 0. This condition implies that the fluid equations are
hyperbolic.

Even though the ideal fluid flow equations only require an incomplete EOS, in order
to specify other thermodynamic constraints a complete EOS is needed. In addition to the
pressure, a complete EOS requires specifying both the temperature and entropy such that

the thermodynamic identity
dE = —PdV +TdS (3.1)

is satisfied.

An incomplete EOS can be extended to a complete EOS by finding an integrating
factor T such that dS = dE/T + PdV/T is a perfect differential [Cowperthwaite, 1969].
The equality of the cross derivatives leads to a scalar hyperbolic PDE for T in 2 variables,
V and E:
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Oy (1/T) = 0p(P/T)
OvT — POgT = —(0gP)y - T

dT/dV = —(0gP)y - T, along dE/dV =—P . (3.2)

The characteristics for the scalar equation corresponds to the isentropes. Therefore, a
complete EOS can be constructed from an incomplete EOS as follows: (i) Compute the
isentropes in the V—F plane. (ii) Choose a curve that intersects every isentrope exactly
once. (iii) Define T arbitrarily along this curve. (iv) Define the value of S for each isentrope
by integrating along the chosen curve dS = dE/T + PdV/T. (v) Define T by integrating
the compatibility condition along each isentrope, Eq. (3.2).

In effect, an incomplete EOS defines the isentropes while a complete EOS, in addition,
labels each isentrope with a value of entropy. We note that the transformation S = f(9)
and T = T/f'(S), for an arbitrary function f, satisfies TdS = TdS. Consequently, the
construction of a complete EOS from an incomplete EOS can not be unique. The non-
uniqueness corresponds to the arbitrary function in step (iii) of the above construction.

Alternatively, a complete EOS can be specified by the specific internal energy, E(V, S).
The temperature and pressure are then given by P = —0y E|g and T = 9dsFE|y. The
additional thermodynamic constraints for a complete EOS are: (i) the entropy S(V, E) is
jointly concave, (ii) 7' > 0, and (iii) the isentrope with S = 0 coincides with the isotherm
with T'= 0. Each of these conditions has a simple physical meaning.

The first condition implies that when two masses in different thermodynamic states
are mixed together and allowed to equilibrate their combined entropy increases. This con-
dition is necessary for thermodynamic stability. It also has two consequences for numerical
computations: (i) Implementing advection in an Eulerian algorithm as a remap of a La-
grangian step is a dissipative process; and, (ii) The entropy of mixing is an additional
dissipative process for Godunov algorithms that use Riemann solvers to determine the flux

at cell interfaces. Both these effects are important for shock capturing algorithms that rely
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on the entropy condition to select out the admissible shock waves. After we have defined
the relevant EOS parameters, a necessary and sufficient condition for the concavity of the
entropy will be given, Eq. (3.11).

The second condition implies that non-equilibrium processes are required for popula-
tion inversions. Whether local thermodynamic equilibrium is an appropriate assumption
for fluid dynamics depends on the relevant time scales for a given application. Non-
equilibrium effects are essential for some applications, such as a gas dynamic laser, and
can be detrimental for other applications, such as the thrust of a jet engine.

The third condition implies that the specific heat goes to 0 as T' — 0. Consequently,
a temperature of absolute zero is not achievable. Physically, this guarantees that the flow
stays within the domain of state space. However, all materials solidify at low temperature
(with the exception of helium which also requires sufficient pressure). Thus, extremely low
temperatures, are not relevant to fluid flow. The concept of an absolute zero for temper-
ature is important to define a temperature scale; e.g., as used in an ideal gas equation of
state, PV = RT. We note that 0° K = —273.16° C.

It is difficult to verify whether an incomplete EOS is thermodynamically consistent
because of the nonuniqueness in constructing a complete EOS from an incomplete EOS.
Furthermore, though thermodynamic constraints are necessary, they are not sufficient for
a physically reasonable fluid flow. An EOS must be such that the initial value problem for
fluid flow is well posed. By this we mean that the solution to the fluid equations exists, is
unique and is stable in the sense of varying continuously with the initial data. Additional
constraints on the EOS that follow from analyzing interactions of elementary waves (the
Riemann problem) will be derived in the next lecture.

In the following we assume an EOS is thermodynamically consistent. A simplified
phase diagram in the P-T plane is shown in Fig. 3.1. Phase space is the quadrant P > 0,
T > 0. With material strength, phase space can include a region of tension P < 0. Phase
boundaries are curves in the P-T plane.

In the P-V plane the corresponding phase diagram is shown in Fig. 3.2. We note that
there is an unphysical region below the cold curve, T' = 0 isotherm. Moreover, the phase

boundaries in the P-T' plane expand into mixed phase regions in the P-V plane.
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Simplified phase diagram in P-V plane. Horizontal lines in the mixed-phase
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It is important to recognize the range of validity for the physical assumption on which
the fluid equations are based. The fluid equations assume that the stress tensor is isotropic
(rotationally invariant), and consequently a multiple of the identity matrix, & = —PL.
Hence material strength is neglected and the solid region in the phase diagram should be
excluded.

For the continuum model to apply the length scale of the flow must be much greater
than the mean free path of a constituent particle. For air the mean free path at sea level
is ~ 107%cm, and the particle number density is ~ 10'°/cm?® . Hence, the continuum
model is a very good approximation. However, the mean free path can be quite large for a
rarefied gas. When this occurs, such as spacecraft reentry through the upper atmosphere,
the continuum model breaks down and one must resort to the Boltzmann equation. An
extreme example with a very large mean free path is the solar wind.

Finally, we note that there is a continuous path in phase space from the liquid to
the vapor regime. Fluids and gases differ in material properties; EOS and transport
coefficients. But the equations of fluid dynamics and gas dynamics are the same and these

terms sometimes are used interchangeably.

3.2 Dimensionless Parameters Characterizing an EOS

Next we define the important dimensionless parameters that characterize an EOS and
give their geometric interpretation:
1. The adiabatic exponent

__OlogP
S ~ OlogV

(3.3)
S

is the negative slope of the isentrope as drawn in the log P-log V' plane. For V near V),

the isentrope through (Vp, Py) is given approximately by

-y
P%%(%) , (3.4)
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where 7 is evaluated at (Vp, Pp); whence the name adiabatic exponent. Moreover, 7

is the dimensionless form of the sound speed
2 =PV . (3.5)

As previously noted, thermodynamics requires v > 0, and implies that the fluid

equations are hyperbolic.

2. The Gruneisen coefficient

__ 0OlogT
g ~ OlogV

(3.6)

S

is the negative slope of the isentrope in the log7T-log V' plane. For V near Vj, the
isentrope through (Vp,Tp) is given approximately by

T
T~ T, (%) , (3.7)

where I is evaluated at (Vj, Tp). Thermodynamic identities imply that the Griineisen

coefficient also measures the spacing of the isentropes:

oP
I=V3E

vV ooP

= 9 (3.8)
, T 08

1%
We note that T is the variable in the compatibility relation, Eq. (3.2), that determines
the temperature along an isentrope for an incomplete EOS. Moreover, I' enters into

the differential thermodynamic relations for the pressure

VdP = —yPdV +TTdS, (3.9a)

VdP = — (y—T)PdV +TdE . (3.9b)

When I'" > 0, the temperature varies monotonically along an isentrope, and thermo-
dynamic phase space may be parametrized by (P,V); i.e., for V fixed, P(V,E) is a

single valued function of E and hence has a unique inverse E(V, P).
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3. Inverse specific heat
PV

= 1
C,T "’ (3.10)

g

where C, = OrE|y is the specific heat at constant volume. Using thermodynamic
identities, see e.g., [Menikoff & Plohr, 1989, Appendix A], it can be shown that con-

cavity of the entropy S(V, F) is equivalent to the conditions
v >0, g>0, and ~g>T2. (3.11)

Moreover, g enters into thermodynamic relations in differential form when V and T

are chosen as the independent thermodynamic variables;

gTdS = rPdV + PVdT/T,
gdE = (T —g)PdV + PVdT/T, (3.12)

gVdP = — (yg—T?)PdV +T PV dT/T .

From Egs. (3.9) and (3.12) it follows that the partial derivative of any combination
among the thermodynamic variables V', E, P, T and S can be determined in terms
of the parameters v, I' and g. We note that the specific heat is not defined for an
incomplete EOS, nor is it needed for the fluid equations when heat conduction and

radiation are neglected.

4. The fundamental derivative

2P 2 2 ZP
g:_%vw = 1V_ 8_

= 1
aP/dV|s 24P 0V2 (3:13)

S

measures the convexity of the isentropes in the P—V plane. In particular, if G > 0

then the isentropes are convex. Moreover,

(3.14)

and the Lagrangian sound speed is monotonic when G > 0. The name fundamental
derivative is due to [Thompson, 1971]. Though this quantity had previously been

identified, Thompson emphasised its great importance for fluid flow.
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The fundamental derivative determines the structure of weak waves. The important
properties of simple waves and weak shock waves are derived below:
(i) Simple waves
For a simple wave, the entropy and one Riemann invariant are constant. Along a

simple wave the variation of the characteristic velocity is given by
d(u + ¢) = £GdP/pc . (3.15)

When G > 0 everywhere, the characteristic velocities are monotonic and simple waves,
in particular centered rarefactions, are always well defined. This is the condition that
the acoustic wave families are genuinely non-linear; see Egs. (2.1) and (2.7).

(ii) Weak shock waves
For a weak shock wave, it follows from Lemma 2.3, Eq. (2.31), that to leading order

the change in entropy is given by
1 ,C 3
AS = —5 QT(AV/V) -1+ O(AV/V)] . (3.16)
Hence, for entropy to be increasing, G - (Vo — V') must be positive.

In the standard case when all isentropes are convex, G > 0 everywhere, shock waves are
compressive and centered rarefactions are expansive. The wave structure for a non-convex
EOS is described later in more detail. In addition, it is shown in the next lecture that
important properties of shock waves and rarefactions are determined by the parameters -,
I' and G.

The fact that the change in entropy is third order in AV/V has additional important
consequences.

Lemma 3.1: For weak shocks, to leading order the wave speed is given by

s=1(+A)+0 ((AV/V)2) , (3.17a)
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and
po - (0 —uo) = 1 (poco + prc1) + O((AV/V)2) . (3.17h)

Proof: In the P-V plane, the Hugoniot locus and the isentrope through the initial state

correspond to second order. Therefore, to second order the Hugoniot locus is given by
Pu(V) = Po = (poco)?® - (V = Vo) + Go - (poco)?po - (V = Vo)* + O((AV/Vo)?) . (3.18)

For definiteness, we assume the shock is right facing, and hence the characteristic velocity
is A = u + ¢. From the Hugoniot jump conditions, Eq. (2.19), we find
ps - (0 —up)® = —AP/AV
= (poco)” + Go - (poco)” - (Vo = VA)/Vo + O((AV/Vo)?) .

Hence,

o=uo+co- (1+300- (o—V2)/Vo) +0((AV/Vo)?)

= Ao+ 3 Gopoco - (Vo — V1) + O((AV/VO)Z) : (3.19)
From Eq. (2.23), we find
(11 — o) = ~AP- AV = 2L (AV)?
e = N

= (poco)? - (AV)? - [1 — Go- (AV/V) + O((AV/VO)2>] :
Hence,
u1 = ug + poco - (Vo — V1) - [1 - %GO (AV/Vo) + O((AV/%)2)] - (3.20)
From Eq. (3.14) we have

p1ic1 = poco + Gopoco - (Vo — V1)/Vo + O((AV/VO)2> , (3.21a)
and using V3 = Vp — (Vo — V1) we find
c1=co+(Go—1) - poco - (Vo — V3) + 0((AV/VO)2) . (3.210)

Combining Egs. (3.20) and (3.21b), the characteristic velocity is given by

AL = Ao + Go poco - (Vo — Vi) + O((AV/VO)2) . (3.22)
We note that the leading order change in pc and in the characteristic velocity are the same
for both a weak shock and a simple wave, Egs. (3.14) and (3.15). Combining Egs. (3.19)
and (3.22) yields Eq. (3.17a), and combining Eqgs. (3.19) and (3.21a) yields Eq. (3.17b).
X X
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The lemma is a special case of a general theorem on hyperbolic PDEs due
to [Lax, 1957]. The theorem states that to leading order the wave speed is the average of
the characteristic velocities ahead and behind the shock front; see e.g., [Smoller, 1983],
Thm. 17.16(a). Equations (3.17a) and (3.17b) are an application of Lax’s theorem in
Eulerian and Lagrangian coordinates respectively. An important consequence of these
relations is that the Godunov algorithm for smooth flow coincides with the method of
characteristics to second order in time; see Ex. 3.6 D. Hence, Riemann solvers can be
used to generate the numerical dissipation needed for shock waves without affecting the
smooth flow.

The structure of weak shocks can be further characterized.

Corollary 3.2: For weak shocks, to leading order

o— A AP Au
0 =—1GopoAV =1G—5 =1G— . (3.23a)
Co PoCy Co

Moreover, when the fluid ahead of the shock is at rest

us/co =1+ 1 Go - (up/co) + O((up/co)2) , (3.23b)

where u, is the shock velocity and u, is the particle velocity behind the shock front.

Proof: From Eq. (3.17a)
o= =10 — X))+ o((AV/V)2) .

Equation (3.23a) follows from Eq. (3.22) and the derivatives at the initial state; dP/dV|;, =
—(poco)? and dP/dulp, = poco. Equation (3.23b) follows from identifying u, with o,
Ao with ¢p, and u, with u;. The error estimate follows from the relation AV/Vy = up/us

which to leading order is u,/co.

X X
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Corollary 3.2 has the following interpretation. On the Hugoniot locus, from Lemma 2.4
the limiting shock speed is the characteristic velocity; i.e., 09 = A\g. Then from Eq. (3.23a),
the first order correction is do/du|y = i%G, where the + and — signs are for right
and left facting waves respectively. For a rarefaction wave, from Egs. (1.16) and (3.15)
d\/dulo = +G. Thus, at the initial state the slope of the wave speed as a function of
particle velocity for a shock wave is half the value of the slope for a rarefaction wave.
Corollary 3.2 also will be important for the discussion in Lecture 5 of realistic equations

of state for metals at high pressure.
As an example, for an ideal gas EOS, Ex. 1.5,

T = E/Cy, with Cy constant,

PV

S:qm( )+&,

the value of the key dimensionless parameters are:

1. y=Cp/Cy > 1.
In general, the adiabatic exponent is not equal to the ratio of the specific heats and
may be less than 1. Larger v corresponds to a stiffer material.

2.T'=~v-1>0.
In general, I' has the same sign as the coefficient of thermal expansion and may be
negative, e.g., water near freezing.

3.g=v—-1>0.
It follow that Eq. (3.11) is satisfied and hence the entropy as a function of V and FE
is jointly concave.

4. G=5(y+1)>1.
In general, G may be less than 1 or negative. In particular, G < 0 near the critical

point for fluids with large specific heats, see e.g., [Cramer, 1989].
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We note that an ideal gas equation of state is physically reasonable in all of phase space,
V > 0 and F > 0. However, it is only a good approximation for some gases in a limited
range of phase space. Similarly, model equations of state used to describe realistic materials
are only quantitatively accurate in a limited domain of phase space. Unlike an ideal gas
EOS, when a realistic EOS is extended outside its domain, in addition to losing accuracy
it may also become qualitatively wrong and lead to an unphysical wave structure for fluid
flow. This is discussed in more detail in lecture 5. The dimensionless parameters introduced
to characterize an EOS will play a key role in analyzing the wave structure.

Though an ideal gas EOS is quite useful for developing an intuition for the non-linear
wave properties of compressible fluid flow, some of the qualitative properties associated
with an ideal gas are not always valid. Typically an ideal gas EOS is used with 5/3 > v > 1.
In this case, for rarefaction waves the sound speed increases with density, and for shock

waves o — ug > c1. These properties depend on the value of G. From Eq. (3.14) we obtain
G—1=(p/c)0yc|s -

Hence, if G < 1 then along an isentrope (hence for rarefactions and weak shocks) the sound
speed decreases with density. Furthermore, if G > 2 (corresponding for ideal gas to v > 3)
then from Egs. (3.19) and (3.21b) for weak shocks ¢; > o — uy.

For a given material, statistical mechanics can be used to determine a complete EOS

in terms of the Helmholtz free energy, F'(V,T) = E—-TS; P = —0F/0V and S = —0F/0T.

R

An important example, is a thermally perfect gas for which PV = RT where R = "<,

R is the gas constant, 8.317@, and Mol-Wt is the molecular weight. Moreover,
dE = CydT and the specific heat C, is a function of temperature only. Physically this
model accounts for the internal degrees of freedom of an atom or molecule, such as vibration
and rotation, but neglects interactions between them. Using thermodynamic identities,

it can be shown for this case that the sound speed is given by ¢* = (Cp,/C,)RT and

Cp, = Cy + R. Hence v = C,/C, > 1, and c is a function of only 7. An ideal gas is a
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special case of a thermally perfect gas in which C, = R/(y — 1) is constant. Furthermore,
for a monatomic gas v = 5/3, for a diatomic gas v = 7/5, and for a polyatomic gas v = 4/5.
A thermally perfect gas is a good description of air in the lower atmosphere and is widely

used in aerodynamics.

3.3 Domain of EOS and Asymptotic Conditions

Thermodynamic phase space can be parameterized by two variables, such as (P, T),
(V, T), (P, S), or (V, S). Physically, in any pair of these variables, phase space should
consist of the positive quadrant; e.g., 0 < V and 0 < S. The freedom to chose independent
variables for phase space results from the thermodynamic requirement that some partial
derivatives never vanish. For example, —0P/0V|s = (pc)? > 0. Hence, an isentrope can
be parameterized by either V or P.

For the domains of the different parameterizations to be consistent, asymptotic prop-
erties are needed on an EOS. Physically, an EOS is expected to satisfy the following
asymptotic properties:

(EOS-1) For S fixed, P(V,S) — oo, E(V,S) — oo and T(V,S) — oo as V — 0. Moreover,
for S fixed, E/P — 0 as V — 0. This is because P = —0F/J0V|s and at a singularity
the derivative blows up faster than the function. Alternatively, the adiabatic index

has the property

Lm y(V,5) =70(5) > 1,

and the Griineisen coefficient has the property

‘;gnOF(V, S)=Tu(S)>0.

This asymptotic condition is a consequence of the strong repulsion between atoms at

short distances.
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(EOS-2) For S fixed, P(V,S) — 0, E(V,S) - E and T(V,S) — 0 as V — oo. Alterna-

tively, the adiabatic index has the property
lim 7(V,5) =75(5) > 1,
V—=oo

and the Griineisen coefficient has the property

lim T(V,S) =Too(S) > 0 .

V—ooo

This asymptotic condition is a consequence of the negligible force between atoms at

large distances.

Since we are interested in fluids, we are neglecting material strength or regions of
tension, and the associated binding energy of a solid. As a consequence the global minimum
of the specific energy occurs at V = oo; i.e., E(V,S) > E for all V and S. Henceforth, we
denote the minimum by F,;, rather than E,,. A global minimum of the specific energy
is necessary for the stability of matter and to rule out perpetual motion machines.

For applications in which ionization is unimportant, the binding energy of the electrons
in an atom may be neglected. Then for a monotonic gas we may take Ey,;, = 0, while for
molecules E,;, is related to the binding energy of its constituent atoms; i.e., the heat of
formation. The difference in F,;, among different molecules is important when considering
chemical reactions; i.e., reactive hydrodynamics.

As V' — 0 or oo along an isentrope, it follows from the asymptotic conditions (EOS-1)
and (EOS-2) that if G has a limit then the limit must be positive and non-zero; i.e., isen-
tropes are asymptotically convex.

(EOS-3) For V fixed, P(V,S) — oo, E(V,S) = coand T(V,S) — oo as S — oo. Moreover,
the specific heat approaches a constant and in the limit o = Joo = PV/E = 45 — 1.
Hence, in the limit the EOS reduces to an ideal gas. This asymptotic condition is
a consequence of the thermal energy at high temperatures dominating the potential

energy between atoms at fixed volume.
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(EOS-4) For P fixed, V(P,S) —» oo, E(P,S) — oo and T(P,S) — o0 as § — oc.
Moreover, the specific heat approaches a constant and in the limit I' = g = PV/FE =
v —1. Again, in the limit the EOS reduces to an ideal gas. This asymptotic condition
is a consequence of the thermal energy at high temperatures dominating the potential

energy between atoms as the atoms get far apart.

We note that “non-interacting” particles behave like an ideal gas. However, some in-
teraction between particles is necessary for thermodynamic equilibrium to be established.
The weaker the interaction, the larger the time constant for a system to approach equilib-
rium. Assuming thermodynamic equilibrium, for large V (rarefied gas) or large 7' (high
temperatures) the EOS of a material approaches an ideal gas EOS. However, at sufficiently
high temperatures molecules dissociate and atoms ionize resulting in a plasma. Magneto-
hydrodynamics is the extension of hydrodynamics that accounts for the electro-magnetic

effects in a plasma.

(EOS-5) In the V—P plane, the T' = 0 isotherm is convex and a lower bound; i.e., V(P,0) <
V(P,T) for any P and P(V,0) < P(V,T) for any V. Physically, the T = 0 isotherm
corresponds to the S = 0 isentrope. From the thermodynamic identities

dlog P/0logV|s = —7,

dlog P/dlogV|r = —y +T2%/g ,
it follows that along the zero isotherm g = oo.

However, for an ideal gas the zero isotherm corresponds to S = —oo rather than

S = 0; i.e., an ideal gas violates the thermodynamic condition that the specific heat
vanishes at T = 0. In this case, the T = 0 isotherm corresponds to the limit of
S — —oo and consist of the union of the curves P = 0 and V = 0. Our analysis of the
Hugoniot locus in the next lecture can still be applied with the additional condition
that £ = E,;, everywhere on the T' = 0 isotherm.

We call an EOS satisfying conditions (EOS-1) to (EOS-4) asymptotically regular.

Though it is convenient to impose these asymptotic conditions in order for the fluid equa-

tions to have well posed mathematical solutions, the physical applicability of the fluid

dynamic model breaks down as the asymptotic limits are approached.
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In general, a point in the VP plane can correspond to several points in thermody-
namic state space; i.e., isentropes can cross. The VP plane provides a unique param-
eterization only if I' > 0. Furthermore, phase space consist of the portion of the V-P
plane above the zero isotherm (often refered to as the cold curve) and may not be the
entire quadrant V' > 0, P > 0. Because dissipation is important for a shock wave, it is

convenient to use S and either V or P when analyzing the Hugoniot locus.

3.4 Riemann Problem

The Riemann problem (RP) is the initial value problem with scale invariant initial
data. In 1-D the initial data consists of two constant states and describes a shock tube
experiment or an impedance match experiment. A shock tube experiment consists of two
gases separated by a membrane. At an instance in time the membrane is broken and
the subsequent motion of the gases is measured. In an impedance match experiment, an
incident shock wave impinges on the interface between two materials, and the transmitted
and reflected waves are measured.

The solution to the RP characterizes the elementary interactions of shock and contact
waves: (i) Shocks of the opposite family colliding; (ii) A shock overtaking a shock of the
same family; and (iii) A shock colliding with a contact. In addition, for an initial value
problem in which the initial data is constant outside a bounded region, the asymptotic
solution for large time consists of the outgoing waves in the solution to the RP [Liu, 1979].
Riemann problems play a key role for hyperbolic PDEs in both the mathematical analysis
of solutions and the construction of numerical algorithms for solutions. Important applica-
tions of RPs are: (i) Glimm’s theorem on global existence of the initial value problem with
small initial data [Glimm, 1965]; (ii) The Random Choice Method (Glimm’s scheme), see
e.g., [Colella, 1982]; (iii) Godunov type (upwind) algorithms; and (iv) The Front Tracking

algorithm.
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Since the PDEs are scale invariant, the solution to the RP is scale invariant. The
most general scale invariant solution of the fluid equations consists of 3 outgoing waves: a
left and right facing wave separated by a contact. Because of the characteristic condition,
Eq. (2.36), if a solution had more than one wave of any family then the waves would
interact and the solution would not be scale invariant for all time.

The Riemann problem can be solved by introducing the concept of a wave curve. For
each wave family, a (forward) wave curve based on an initial state is defined as the locus of
final states of stable scale invariant waves of the given wave family connected to the given
initial state. Relative to the wave propagation, the initial and final states correspond to the
ahead (upstream) and behind (downstream) states respectively. For the fluid equations,
the contact is linearly degenerate and its wave curve has two global invariance; u and P.
As a consequence, we need only consider the wave curves for the two non-degenerate wave
families; i.e., the right and left wave familes associated with the characteristic velocities
u =+ c.

Using wave curves the Riemann problem is solved as follows: In the u—P plane, plot
the projection of the right wave curve based on the right state and the left wave curve based
on the left state. The intersection of the wave curves defines the left and right outgoing
waves in the solution. Behind these waves, the jump in the thermodynamic variables
determines the contact. The same solution algorithm applies if the left and right state
correspond to different materials characterized by different equations of state. In this case
the contact is the material interface.

In the standard case of a convex EOS, G > 0 everywhere, we show in the next lecture
that the wave curve consists of shock waves in compression and rarefaction waves in ex-
pansion. Depending on the initial data, there are five possibilities for the outgoing waves
in the solution to a Riemann problem, as are shown in Fig. 3.3:

A. shock, contact, shock;
rarefaction, contact, shock;
shock, contact, rarefaction;

rarefaction, contact, rarefaction;

= U Qw

rarefaction, vacuum, rarefaction; i.e., cavitation.
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FIGURE 3.3

Types of solutions to 1-D Riemann problem.
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The first four cases are quite intuitive. We postpone discussing the fifth case until after

we have analyzed the existence of a solution to the RP.

The graphical construction is both necessary and sufficient for a solution to the RP.
Consequently, uniqueness and existence of solutions to the RP can be related to properties
of the wave curves. Two important properties of the wave curves follow from the symmetry
of the fluid equations:

(WC-1) The wave curve of each family simply translates with the velocity of the initial
state. This is a consequence of Galilean invariance of the fluid equations.

(WC-2) The right wave curve based on velocity ug is the reflection about the line u = ug
of the left wave curve based on ug. This is a consequence of the reflection invariance,
r — —x and u — —u, of the fluid equations.

From these two properties it follows that the only way the Riemann problem for any initial

data can have a unique solution is to require that the wave curves are monotonic in both P

and u. In particular, dP/du must be positive for the right wave curve and negative for the

left wave curve. Because dP/du has the opposite sign for the right and left wave curves,
at most one intersection can occur for the two wave curves that enter into the graphical
solution to the RP. On the other hand, if a wave curve is not monotonic then from the
reflection symmetry of right and left wave curves, the Riemann problem with initial data
corresponding to a symmetric impact, uy, = —ug > 0, will not have a unique solution for

a range of initial velocities, see Fig. 3.4.

In the next lecture, as a consequence of the asymptotic properties of an EOS, it is
shown that the wave curves have the following asymptotic property.

(WC-3) The wave curve is semi-infinite, extending from P = 0 and u = finite (escape
velocity) to P = oo and u = +oo (+ for a right wave curve and — for a left wave
curve).

It then follows that the wave curves used in the graphical construction of the solution to

the RP either intersect at a finite P > 0 or else the minimum Aw is at P = 0. The latter
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u

FIGURE 3.4

Nonuniqueness of solution to Riemann problem when the wave curve is not mono-
tonic in u—P plane.

case corresponds to cavitation; instead of a contact, the left and right rarefactions waves
are separated by a vacuum. We note that P = 0 corresponds to p = 0, and hence the
mass, momentum or energy fluxes all vanish in a vacuum. Consistency of a solution with
a vacuum places a further constraint on the EOS. Normally, a particle trajectory traverses
through the rarefaction fan. For a rarefaction to end in a vacuum, the characteristic
velocity and the particle velocity must coincide. Therefore, the sound speed must vanish
at the ‘contact’ between a rarefaction and a vacuum. When ¢ = 0, all three characteristic

velocities are the same and the PDEs are not strictly hyperbolic.

Remark 3.3: The characteristic equations are unaffected if the pressure is shifted by a
constant. Furthermore, a shift in pressure can be implemented by a simple transfor-
mation of the EOS; V! =V, B = E+ PV, P =P —-PFPy, T"=T and S’ = S. The
transformed EOS satisfies the thermodynamic identity, Eq. (3.1). The dimensionless pa-
rameters that characterize the transformed EOS are given by v/ = P_L;Ofy, =T, and

P—Py

g' = =p2g. Consequently, provided P > Py and P > 0, Eq. (3.11) remains valid and

the transformed EOS is thermodynamically consistent. However, a vacuum requires that
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the wave curve end with dP/du = 0. Hence the existence of a vacuum gives meaning to
a pressure origin. One can not arbitrarily cut-off the pressure and expect the Riemann
problem to have a solution for any initial data; i.e., case E in Fig. 3.3 would not be a
valid solution. In nature, expansion to low pressures for a gas leads to low densities and
a large mean free path. Hence, the continuum approximation breaks down. For a liquid,
rather than a vacuum, expansion to low pressures leads to a phase transition to a vapor
region. For a solid, material strength can support tension. Large tension leads to spall.

This is the analog of the formation of a vacuum region.

Our results on the Riemann problem can be summarized as follows.
Theorem 3.4: If every wave curves satisfies the asymptotic condition (WC-3), then a
solution exists to any Riemann problem. Furthermore, monotonicity of the wave curves
is both necessary and sufficient for uniqueness to all Riemann problems, i.e., for any

initial data.

The requirement that the RP has a unique solution naturally leads to the question:
How are the monotonicity properties of the wave curve related to conditions on the EOS?

For the rarefaction branch, from Eq. (1.16), (3.14) and (3.15) we find that

dP/du = +pc , (3.24a)

d*P/du® = pG . (3.24b)

Hence, in the u—P plane a rarefaction curve is monotonic and convex when G > 0. There-
fore, in the standard case of a convex EOS we only need to examine the monotonicity of
the shock branch of the wave curve. In the next lecture the shock locus is analyzed in
detail for an arbitrary EOS.

Here we note some further properties of weak shocks. It follows from Eqs. (2E.4)
and (3.23b) that the first two derivatives in the u—P plane at the initial state are also

given by Eq. (3.24). Hence, at the initial state where the shock and the rarefaction branch
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of the wave curve meet, both dP/du and d?P/du? are continuous. Thus, the fundamental
derivative measures the convexity at the initial state of the projection of the wave curve
in the u—P plane. This will be shown to have important consequences for numerical
algorithms. In fact it is a general property of hyperbolic systems that the Hugoniot locus
and the rarefaction locus for a genuinely non-linear wave family can be parameterized such
that the first two derivatives are continuous at the initial state; see e.g., [Smoller, 1983],
Thm. 17.15.

On the rarefaction branch of the wave curve, R_ is constant for right facing waves
and Ry is constant for left facing waves; see Eq. (1.14). We can generalize the Riemann
invariants to allow for variable S as follows

Vo

Ri(u,V,S)=u—up=+ / pcdV + Ry v, (5) .

1% isentrope
thru Vg,S

The last term gives a degree of freedom which can be used, for example, to define for an
ideal gas global Riemann invariants, Ry = u—u%2 (c—cp)/(y—1). From Egs. (3.16), (3.20)
and (3.21a), to leading order for a right facing shock AR_ = O((AV/%)?’), and for a
left facting shock AR, = O((AV/ V0)3). Thus, for weak shocks the entropy and one of
the Riemann invariants are constant to second order. This is also a general property of
hyperbolic systems; see e.g., [Smoller, 1983], Thm. 17.16(b).

Consider the method of characteristics for homentropic flow (constant entropy). The
characteristic curves, dz/dt = u + ¢, provide a local co-ordinate system for the z—t plane.
The co-ordinates can be chosen as the right and left Riemann invariants, R4. The fluid
variables can be obtained from the Riemann invariants using a variant of the wave curves
which determine the solution to the Riemann problem. Suppose one modifies the wave
curve by extending Eq. (1.16) from the rarefaction branch to compressive simple wave,
i.e., entropy and one Riemann invariant are constant. Then in the w—P plane, the in-
tersection of the modified right wave curve associated with the left facing characteristic

and the modified left wave curve associated with the right facing characteristic uniquely

Lecture 3.4 94— Lecture 3.4



Lecture 3 Equation of State and Riemann Problem Lecture 3

determines the (u, P) state with given left and right Riemann invariants. Consequently,
the interaction of simple waves with boundaries (rigid wall, constant pressure or contact)
can be determined with the same graphical construction based on wave curves that is used
to analyze the interaction of shock waves; see e.g., Ex. 3.4 and 3.5.

The Taylor expansion of P(u) for the wave curve and the modified wave curve are
the same to second order. Consequently, the solution to the Riemann problem and the
characteristic equations agree to second order. As a result, the Godunov algorithm is the
natural extension of the method of characteristics. The Riemann problems used in the
Godunov algorithm account for the upwind flow of information and add the dissipation
necessary for shock waves without affecting smooth flow. This is possible because the
entropy change in weak shocks is third order.

As an example of the theory developed up to this point, consider an ideal gas EOS.
From the explicit formulae for the shock Hugoniot (Ex. 2.7 A) all variables, P, u, E and

V', vary monotonically with shock strength. In particular, for a right facing shock

dP/dM M3
dP/d’U, = W = 2ppco - W >0, (325&)
1 d 1+3/M?
2 2 _ ) — 1 — 2
&P/du” = St oz (AP/An) = O+ 1) o a1 0 (B2

where M is the shock Mach number. Hence, for both shocks and rarefactions, the projec-
tion of the wave curve in the u—P plane is monotonic and convex. From the monotonicity,
there is a unique solution to the Riemann problem with an ideal gas EOS and any initial
data. Moreover, from the convexity of the wave curve, a Newton’s iteration method will
converge to the solution for the intersection of the left and right wave curves; see Ex. 3.7.
In addition, the escape velocity u+2¢/(y—1) is finite, and the rarefaction curve ends with
c = 0. Hence, one can construct initial data for a RP corresponding to each of the 5 cases

shown in Fig. 3.3.

General references:
1. [Davis, 1985]
2. [Menikoff & Plohr, 1989]
3. [Smoller, 1983], chpts. 17 and 18
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Exercises

Wave interactions are a special case of a Riemann problem and can be solved with the
use of wave curves. As an example, consider an ideal gas EOS with v = 5/3. Furthermore,

suppose the ambient state is given by Vo =1, Py = 1, and ug = 0.

A) Plot the wave curve in the u—P plane for the collision of two shocks of the opposite
family. Assume the shock pressure for the left facing shock is 15 and for the right facing

shock is 5. Show the outgoing waves are both shocks.

B) Plot the wave curve in the u—P plane for the overtake of two shocks of the same family.
Assume both shocks are right facing and the shock pressure for the lead shock is 5 and for
the second shock is 30. Show the outgoing waves are a right facing shock and a left facing

rarefaction.

Consider an ideal gas EOS with v = 4. Suppose Hj is the shock Hugoniot based at
the initial state Py =1, V5 = 1 and ug = 0. Let the subscript ‘1’ denote the state on H

with P, = 10.
A) Verify the shock Hugoniot Hy and H; in the u—P plane are as shown in Fig. 3.5.

B) Can one conclude from the intersection of the Hugoniot loci in the u—P that the shock

0—¢ can split into two shocks; 0-1 and 1.

C) Conclude that the overtake of two shocks of the same family, depending on shock
strengths, can result in an outgoing shock of the same family and either a shock or rar-

efaction of the opposite family.

D) For any v > 1, when the second shock is sufficiently strong (large P), show that in
the u—P plane H; lies to the left of Hy. What can you conclude about the overtake of a

shock by a strong shock of the same family.
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FIGURE 3.5

Shock loci in u—P plane for ideal gas with v = 4. Initial shock is solid line. Second
shock from state Py /Py = 10 is shown as dashed line emanating from solid circle.
Intersection of the two loci is labeled ‘i’.
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Suppose an EOS has the properties that (i) 0 < T' < «, (ii) G > 0, and (iii) on any
Hugoniot locus both the entropy and the mass flux through the shock front are mono-
tonically increasing. From Ex. 2.7, an ideal gas EOS satisfies these conditions. In the
next lecture it will be shown that the second property implies the third. Let Hy be the
shock Hugoniot based at the initial state denoted by the subscript ‘0’. In addition, let the
subscript ‘1’ denote any state on Hy, and H; the shock Hugoniot based at the state 1.

Consider any state 2 on Hy and corresponding state 2’ on H; with Py = Ps.
A) In the V-P show that Hj lies to the left of Hy; i.e., Var < V5.

B) Show that the entropy increase from a sequence of two shocks is lower than that of a

single strong shock to the same final pressure; i.e., Sor < S3. Moreover, Ey < FEs.

C) Let the velocity difference across a shock from state i to state j be denoted u; j = u;—u,;.

Show that uq 2 < ug 2.

D) Show that the collision of two shocks of the opposite family always results in two

outgoing shocks.

A) Sketch the wave curves for a shock reflecting from a rigid wall.

B) Generalize to the case when the wall is moving with velocity U,, i.e., a piston.

A shock impedance match refers to the interaction that occurs when an incident
shock impinges on a contact or an interface between two materials. The result is a trans-

mitted shock and a reflected wave.

A) How do you determine whether the reflected wave is a shock or a rarefaction? Show
that when the pressure increases the particle velocity decreases and vice versa.

The shock Hugoniot of many metals at high pressures (exceeding the yield strength)
have been determined experimentally from a sequence of impedance match experiments
in which a flyer plate (e.g., driven by a gas gun) strikes a target. The flyer plate velocity

before impact uy and the shock velocity in the target o are measured.
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B) One starts by calibrating a standard material. When the flyer plate and the target are
the same material, how is a point on the Hugoniot locus P; and V, determined from uy
and o7 Repeated experiments varying u; are needed to determine the principal Hugoniot

locus of the standard.

C) Suppose the Hugoniot locus of the flyer plate is known. How is a point on the Hugoniot
locus of the target determined from u; and o ? Again repeated experiments varying uy

are needed to determine the principal Hugoniot locus of the target.

D) Can the sound speed be determined from the Hugoniot locus, or if not, can a lower or

upper bound be placed on the sound speed?

For weak waves, the projection of the wave curve in the u—P plane can be linearized
and approximated by a straight line. The slope dP/du at the initial state is called the

acoustic impedance.
A) Show that the acoustic impedance is equal to pc.

B) For a weak shock incident on a contact (previous problem) show that the reflected
wave is a shock if and only if the acoustic impedance is larger for the transmitted material

than for the incident material.

C) Show that weak shock waves of the opposite family pass through each other, i.e., to
first order the outgoing waves have the same strength as the incoming waves, and AP =

AP; + APg.

D) Show that to second order a finite difference approximation of the characteristic equa-
tions is equivalent to calculating the contact state of the solution to a Riemann problem
from the intersection of the left and right wave curves. Hint, consider Egs. (1.16), (2E.4)

and (3.17b).
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Consider the Riemann problem when the left and right state obey ideal gas equations

of state. The solution to the Riemann problem is determined by the equation
u(P) = ug(P) — u-(P) =0, (3E.1)

where uy and u, are the left and right wave curves. A common technique for solving a

non-linear equation is a Newton iteration:

u

P, =P, -
n+1 n du/dPPn’

(3E.2)

starting with some initial guess Fj.
A) Show that u(P) is a convex function.

B) In the u—P plane, there is a simple geometric construction which corresponds to a
Newton iteration. Illustrate the construction when the initial guess is both above and
below the solution. When Py lies below the solution, conclude from the geometric picture
that (i) the sequence P, is monotonically increasing, (ii) P, converges to the solution, and
(iii) the convergence rate is second order. Also show that the acoustic approximation, the

intersection of the tangents of the left and right wave curves, gives a lower bound for P.
C) Determine uy,(P) for the shock branch and for the rarefaction branch of the wave
curve.

D) If the solution to the Riemann problem consists of two rarefactions show that P at

the contact is bounded by
P

Al/nmin S P : < Al/nmax , (3E3)
where
ng = e~ 1
2’)13 ’
n. — Yr — 1
T 2’)’7" ’

Nmin = Min(ng, n,) ,
Nmax = max(ng, n'r) 3

Pmin == min(PEOa PTO) 3

2cyo 2¢r0
Upy — U 280 4 2Cro
e s

n n .
2cqg Prin ¢ + 2¢cro Prin "
Ye—1\ Peo Yr—1\ Pro
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Note, if 7, = =y, then Eq. (3E.3) gives the exact solution for case of two rarefactions.

E) On the shock branch show that the wave curve is bounded by
poAu - (CO + 'YT-HAU> < P— Py < poAu - (CO + WTHA?O , (3E .4)

where Au = uy — ug. When the solution to the Riemann problems consists of two shocks,

how can analytic bounds on P at the contact be determined.

F) Write a subroutine to solve Eq. (3E.1).
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Solutions

For an ideal gas EOS the shock locus can be computed using the formulae derived
in Ex. 2.7 A, and the rarefaction locus from the formulae derived in Ex. 2.4 A. The wave

curves for the two cases are shown below.
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Fig. 3.6 A: The collision of two shocks of Fig. 3.6 B: The collision of two shocks of
the opposite family. the same family.

A) In Fig. A, the dashed curves are the right and left shock loci from the ambient state.
The state behind the left and right facing incoming shocks are the indicated right and left
initial states for a Riemann problem. The solid lines are the wave curves based at the
initial states for the Riemann problem. Their intersection represents the contact state for

the outgoing waves. It follows from the figure that both outgoing waves are shocks.

B) In Fig. B, the shock loci for the ambient state and the lead shock (dashed line) are
shown. The ambient state and the state behind the second shock are the right and left
states for a Riemann problem. The left facing wave curve from the state behind the second
shock is shown; solid line for the shock locus and dotted line for the rarefaction locus. The
intersection with the shock locus for the ambient state represents the contact state for the
outgoing waves. It follows from the figure that the outgoing right facing wave is a shock

and the outgoing left facing wave is a rarefaction.
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A) For an ideal gas EOS the shock locus can be computed using the formulae derived
in Ex. 2.7A.

B) The conclusion is false. The shock loci Hy and H; are of the same family. Because
of the characteristic condition, Eq. (2.35) (verified in Ex. 2.7C), two shocks of the same
family will interact. For the graphical solution of the Riemann problem, it is essential that

the wave curves from the right and left state be of the opposite family.

C) If the first shock is on Hy at state 1, and the second shock is on H; between states 1
and 7, then the Riemann problem corresponding to the overtake of the two shocks will have
a solution with two outgoing waves consisting of two shocks. On the other hand, if the
second shock is above state ¢ then the outgoing waves will be a shock of the same family

and a rarefaction of the opposite family.

D) Consider the state 2 on Hp and the state 2’ on Hy. From Ex. 2.7 E, in the strong shock

limit

+1
Py = 7—POU§
2
+1
le:’yZ p]_’U/gl

Since pg < p1, when Py = Py, it follows that usr < us. Hence asymptotically, H; lies to
the left of Hy in the u—P plane. When the second shock is strong the geometry of the
wave curves is the same as in Fig. 3.6 B. Therefore, the solution to the Riemann problem

corresponding to the overtake by a strong second shock will have a reflected rarefaction.

A) By Lemma 2.3, for weak shocks the entropy change is third order in shock
strength, and AV < 0 since G > 0. It follows from Eq. (3.9a) when I" > 0 that for every
point on the shock Hugoniot —dy P|s < —dP/dV |y, with equality only at the initial state.
Therefore, at the state 1, —dP/dV |y, = —0v P|s < —dP/dV|g,. Hence, in the VP plane

H; starts out to the left of Hy. To show that H; remains to the left of Hy, it is sufficient
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to proof in the VP plane that Hy and H; intersect only at the state 1. The proof is
by contradiction. Suppose Hj intersects H; at a state 2 different from state 1. At the
intersection, the energy F must be the same since P and V parameterize phase space when

I' > 0. From the Hugoniot equation, (2.22), we have

Ey; — Ey = (B3 — E1) + (E1 — Ep)
5P+ Py)-Vo=Vo) =5 (Pa+P1)- (Vi =Va)+ 5 (Pi+Po)-(Vo—V1) . (3S1)
Geometrically, each term is the area of a trapezoid in the V—P plane. Hence, Eq. (3S.1)
implies that the points (Vp, Py), (V1, P1) and (Va, P») lie on a straight line. In particular,

P,—-P, P-F
Vo—Va Vo-Wi '

By Eq. (2.18) this implies the mass flux through the two shocks on Hj to state 1 and
state 2 are the same. This contradicts the assumption that the mass flux is monotonically
increasing. Therefore, H; must lie to the left of Hy in the VP plane; ie., Vo < Vs

whenever Py = Py, > P;.

B) Since Py = Ps, from Eq. (3.9a),

Ve
vP
S—Sf:/ — dV .
2 2 v, IT

By the previous part, Var < V5. Since the integrand is positive, Sor < S3. This has the
interpretation that a sequence of two shocks generates less entropy than a single shock to
the same final pressure. Similarly from Eq. (3.9b) and the assumption (i), it follows that

Vo < V5 implies Eor < Ej.

C) From Eq. (2E.7) we have

Uy =FEy—Ey—Py- (Vo —Va)

U%72/:E21—E1—P1'(V1—‘/2l) .

N[
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Since state 1 is on Hy
Ei—Ey=3([Pi+F) (Vo-W) .

Combining these three equation we obtain,

L(uda—dy) = (B2 = Ba) + (PL=Ro)- |5 (Vo+ Vi) = Var| + Po- (Vo= Vi) .
Since Eor < Ey, P; > Py, Vor < V5 and Vor < V; < Vjy, each term on the right hand side is
positive. Therefore, u1 o < ug 2.

D) For the collision of two shocks of the opposite family, the qualitative structure of the
wave curves is shown in Fig. 3.6 A. The previous part implies that the wave curves from
states R and L never intersect the initial wave curves; i.e., the solid lines do not intersect

the dotted lines. Consequently, for the Riemann problem the shock branches of the wave

curves must intersect. Therefore, the outgoing waves are both shocks.

A) The reflection of a shock from a rigid wall is equivalent to the symmetric collision
of two shocks shown in Fig. 3.7. The wall pressure after the reflection is the same as the
pressure at the contact.

B) A Galilean transformation to the frame moving with the piston reduces the problem

to the reflection from a rigid wall.

contact /

FIGURE 3.7

Wave curves for the reflection of left facing shock from rigid wall.
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Fig. 3.8 A: Impedance match with Fig. 3.8 B: Impedance match with
reflected rarefaction. reflected shock.

A) At the moment the incident shock impacts the interface, the state of the fluid
flow defines the initial conditions for a Riemann problem. For simplicity we assume that
the ambient material is at rest, and that the incident material is on the left and the
transmitted material is on the right. Hence the incident shock and the transmitted shock
are right facing waves, and the reflected wave is left facing. Let Pr, be the pressure behind
the incident shock, and Pr be the ambient pressure. These correspond to the pressure
of the left and right states for the Riemann problem. The wave curves in the u—P plane
for an impedance match are shown in Fig. 3.8. The incident, transmitted and reflected
wave curves are represented by solid, dotted and dashed lines respectively. The left and
right states for the Riemann problem are shown as solid circles and the solution state as
an open circle. There are two cases; uy(Pr) < ur(Pr) and up(Pr) < ur(Pr). In the first
case, shown in Fig. 3.8 A, the reflected wave is a rarefaction. In the second case, shown in
Fig. 3.8 B, the reflected wave is a shock.

For a left facing wave curve the pressure decreases as the velocity increases. Conse-
quently, when the reflected wave is a rarefaction the pressure decreases and the velocity
increases. On the other hand when the reflected wave is a shock the pressure increases and
the velocity decreases. For the special case when uy(Pr) = ur(Pr), the reflected wave has

zero strength and is degenerate; i.e., there is no reflected wave.
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Flyer Target Flyer

P : P

0 1/2u, U, 0 Uy
Fig. 3.9A: Impedance match for Fig. 3.9B: Impedance match for
calibrating standard. target EOS.

B) Consider the Riemann problem corresponding to the instant when the flyer plate im-
pacts the target. When the flyer plate and target are in the same thermodynamic state, the
reflected wave curve and the transmitted wave curve are related by Pr(u) = Pr(us — u).
By symmetry the solution is u = % uy. This is illustrated in Fig. 3.9 A. From the Hugoniot
relations

Py = 3 pougo

g

Pr = Po -

o~ jus
There are two main experimental difficulties: (i) To avoid shock heating the flyer plate
from rapid acceleration to velocity uy. For gas guns and explosively driven flyer plates,
the maximum velocity typically is limited to uy < 10km/s. This in turn limits the peak
Hugoniot pressure to a few Mbars. (ii) The flyer plate and target must be aligned such that

the impact is normal to the interface. Otherwise, 2-D effects complicate the interpretation

and increase the error bar of the equation of state data point from the experiment.

C) Let the wave curve of the standard be denoted by Psq. The reflected wave curve for

the flyer is given by
P = Pstd(’u,f — U,) .
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From the Hugoniot relations, the shock in the target satisfies

P = (pro0)u .

Because u and P match at the interface between the flyer and the target, the solution of
the Riemann problem is the intersection of the two curves; (u., P.). This is illustrated
in Fig. 3.9 B. From the Hugoniot relations, the density in the target behind the shock is
Prs = 724 Pro-

Determining the principal Hugoniot for a material is a time consuming and expen-
sive process. High pressure Hugoniot data for a large number of materials is given in

[Marsh, 1980].

D) Because the entropy changes with shock strength, the sound speed can not be deter-
mined from the shock Hugoniot alone. However, the characteristic condition, Eq. (2.36),

gives a lower bound on the sound speed, 0 — u, < c.

A) For simplicity we can assume that ug = 0. From Eq. (2E.4), P = Py + pouo.

Therefore, at the initial state (d/du)P = pgo = poco.-

B) When the wave curves are linearized, a larger acoustic impedance in the incident
material corresponds to Figs. 3.8 A and a reflected rarefaction. Similarly, a larger acoustic

impedance in the transmitted material corresponds to Figs. 3.8 B and a reflected shock.

C) The wave curves in the u—P plane for the collision of two shocks of the opposite
family are shown in Fig. 3.6 A. In the acoustic approximation the wave curves form a

parallelogram. Hence, the change in pressure across the two waves add linearly.

D) The following notation is convenient. Let

P=P(z,t+At), u =u(z,t+At),
Py=P(x—cAt, t), u =ulx—cAtt),
P, =P(x+cAt t), u, =u(z+cAt,t).
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From Eq. (1.16), the finite difference form of the characteristic equations are

P —Py=—(pc)e - (u— ue)

P—-P.= (po)r-(u—u).
Suppose pc is approximated by

(pC)e = 5 (pece + pc)

(R)T = % (prcr + pC) .

This corresponds to the trapezoidal rule for [ pcdu. Hence the difference equations are
accurate to second order.

Now consider the Riemann problem with initial data (u,, Pp) for the left state and
(ur, P.) for the right state. The solution of the Riemann problem is determined by the

intersection of the wave curves in the u—P plane. From Eq. (2E.4), for a shock wave
AP =po- (0 —up) - Au .
Equation (3.17b) gives the wave speed to order (AV/V)?
po - (0 —ug) = %3 (poco + prc1) -
With this approximation,
AP = i% (poco + p1c1) - Au .

This equation is also valid to the same order for a rarefaction wave because the first and
second derivatives of P(u) are continuous, Eq. (3.25). Moreover, the intersection of the
wave curves is accurate to second order. To this order, the equations for the projection
of the wave curves in the u—P plane are identical to the finite difference form of the
characteristic equations. Hence, to second order the solution of the Riemann problem
is equivalent to the solution of the finite difference characteristic equations. Note, this
analysis has neglected the variation in entropy over the spatial interval (z — cAt, z + cAt)

and the time interval (¢,¢+ At).
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u u

Fig. 3.10 A: Geometric construction Fig. 3.10 B: Geometric construction
of Newton iteration when P is above of Newton iteration when P is below
the solution. the solution.

A) From Eq. (3.25), P(u) is convex for both the left and right facing wave curve.

Inverting the function we find

du 1

dP ~ dP/du’
d?u d*P/du?

dP?2  (dP/du)3 "
For the right wave curve dP/du > 0 and for the left wave curve dP/du < 0. Therefore,

ug(P) is convex and u,. (P) is concave. The negative of a concave function is convex. Hence,

ug(P) — u,-(P) is convex.

B) A Newton iteration applied to the function u(P) is equivalent to finding the intersection
of the tangents of the left and right wave curve. The geometric construction is shown in
Fig. 3.10. From the convexity of P(u), the intersection of the slopes always lies below the
solution. Furthermore, when P lies below the solution the iteration increases P. Therefore,
if Py is below the solution then P, is monotonically increasing. For smooth functions, its
well known that the convergence rate of Newton method is second order. However, the

first iteration may be out of range if Py lies above the solution; i.e., P; < 0 is possible.
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Therefore, it is important to determine a lower bound that can be used as the initial guess
to start the iteration.

It also follows from the geometric picture (convexity of the wave curves) that the value
of P from the intersection of any tangent to the left wave curve with any tangent to the
right wave curve lies below the solution. In particular, the acoustic approximation which

uses the tangents at the left and right states gives a lower bound for P.

C) For a shock wave, from Ex. 2.7 A

2 1
= :l:—(M——) ,
U=t v+1 M c

_y+1 P-P

M2
2’)/ PO ’

where the + and — signs are for right and left facing waves respectively.

For a rarefaction wave, from Eq. (1.17)

2 c
’U,1:’LLO:|: C()(——l)
Y

n 2 (P)“’z—_y1 )
=u coll— —1] .
T y-17\R

D) From part (C) when both waves are rarefactions, Eq. (3E.1) can be written

2¢qp 2¢r0
Ye — 1 Yr — 1

2¢y0 <Pmin)m'-< P >nl+ 2¢,0 (Pmin)"r.( P

Uz
= Ugpo — U0 +
’Ye_l PEO Pmin ’Yr_l PrO Pmin) "

We note that if z,n € (0,1) then for fixed x the value of 2™ increases as n decreases. Since
P < Ppin and ng, n, < %, we can apply the inequality and factor out the term (P/Ppyn)™.
This leads to the bounds given in Eq. (3E.3). When 7y, = +,, the inequality is not needed.
E) It follows from Eq. (2E.13) that

(us/co>2 — ’YT—H(AU/%) . (us/co> —1=0,

where us = 0 — ug. It is easy to verify that for fixed Awu the left hand side flips sign and

hence a solution ug lies in the interval

co+7THAu§us§co+WT+lAu.
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The other solution of the quadratic is extraneous because ugs < 0. The bounds on
the wave curve, Eq. (3E.4), follows from the bound on the wave speed and Eq. (2E.4),
AP = py Au - ug.

The solution to the Riemann problem can be determined from the equation

where Py and P, are the left and right wave curves. From the convexity of P(u), a lower
bound on both wave curves gives a lower bound for the solution P, and conversely an upper
bound on both wave curves gives an upper bound for P. The bounds in Eq. (3E.4) give
rise to a quadratic equation in w which can be solved analytically and used to determine

bounds on P.

F) Based on the previous parts, the algorithm shown in Fig. 3.11 is a robust means
for finding the solution to a Riemann problem. The convergence rate of the iteration is
second order. Improving the initial guess would result in fewer iterations and speed up
the algorithm. This can be done by first determining the type of outgoing waves; i.e., the
solution type in Fig. 3.3. When the outgoing waves are both rarefactions or both shocks the
initial guess can be based on parts (D) or (E). For a survey of other algorithms see [Gottlieb

& Groth, 1988].
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/+* Riemann solver for ideal gas equation of state x/
/* (ug0, Plo) is left state and (upo, Pro) is right state */
/* u(P) and dudP(P) on wave curve to be evaluated from formulae in part (C) */
Prin = min(Pyg, Pro);
/* Acoustic approximation for initial guess x/
dudP, = 1/(pro * cro);
dudP; = 1/(pio * ci0);
P = (Pyo * dudP, — Py * dudP, — (u,0 — wyp)) / (dudP,. — dudP));
P = max(P, Ppyn);
for(N;er = MaxIterations; Nye,——; ) /+* MaxIterations =5 x/
{ /* Newton iteration x/
Evaluate u;(P), dudP,(P), and u,(P), dudP,(P)
dP = (ur —w;) / (dudP, — dudP));
P —=dP;
if( abs(dP) < RelativeError x P ) /+ RelativeError = 10~% x/
{ /* Found solution */
Compute full left & right state at P
return;
}
if( dP < 0 AND P < 0.1 % Poin )
{ /* This can only occur on first iteration */
wp = 1w +2/(v — 1) * o
Up = Upg — 2/(Vr — 1) * o

if(w < u, )

{ /* vacuum solution /x
P =0;
Compute full left & right state at P
return;

}
P = lower bound from Eq. (3E.3)

}

/* Error, failed to converge. However, P is lower bound. */

FIGURE 3.11: Algorithm for Riemann solver with ideal gas equation of state.
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Lecture 4

Constraints on Equation of State

For the fluid flow equations to be predictive and hence useful for applications, a
solution to the PDEs must exist for all physically realizable initial conditions. Moreover,
the solution must be unique and stable to small perturbations in the initial data. A
necessary condition for all initial value problems to have a unique solution is that any
Riemann problem has a unique solution. In the previous lecture, theorem 3.4, we found that
solutions to the Riemann problem were related to asymptotic and monotonicity properties
of the wave curves. We further require that all shock waves are stable to perturbations in
both one and two dimensions.

In this lecture, we relate properties of the wave curves to conditions on the EOS. In
particular, we analyze the Hugoniot locus. This leads to constraints on an EOS that are
necessary for a reasonable fluid flow. It is convenient to distinguish two classes of equations
of state. An EOS is called convex if every isentrope is convex; i.e., G > 0 everywhere. For
a convex EOS, the wave curve is simple. We will show it consists only of compressive shock
waves and expansive rarefaction waves. The non-convex case is more difficult because the
wave curve requires additional composite wave types. This will be discused later in more
detail.

We assume an equations of state is thermodynamically consistent and asymptotically
regular. This is the expected behavior of an EOS corresponding to a real material. Based
on the analysis of the wave curve, additional constraints on an EOS are introduced as

required.
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4.1 Parameterization of Hugoniot Locus

The projection of the Hugoniot locus in thermodynamic state space is determined by
either Eq. (2.22) or by Eq. (2.21). This leads us to introduce the Hugoniot function in

V—-S plane

WV, 8) = E(V,S) — E(Vo,S0) + 5 [P(V,S) + Po] - (V = Vo), (4.1a)
or equivalently in the P—S plane

h(P,S) =h(V(P,S),S) = H(P,S) — H(Py, So) — 1 [V(P,S) + Vo] - (P — Py) . (4.1b)

The Hugoniot locus based on the initial state (Vp, So) or (P, So) is the zero level set of its
associated Hugoniot function.

Our analysis will heavily utilize the differential of the Hugoniot function. Taking the
differential of h(V, S) and substituting the thermodynamic relation dE = —PdV + T dS

we obtain

dh=TdS — L APdV + 1AV dP. (4.2)

Substituting the thermodynamic relation VdP = —yPdV + I'T'dS then leads to

AV AV AP
— 1r=—_ _1 - 4=
dh_(1+21‘V)TdS 2<7V + P)pdv, (4.3a)
or
- I AP 1 ( AV AP
=(1-—.== iy PV Al P . 4.
dh (1 TR )Tdsurz7 (v 7+t )Vd (4.3b)

A zero of the Hugoniot function specifies the thermodynamic variables for a shock.
The shock velocity is determined by Eq. (2.19) and the particle velocity by (2.23), provided
that AP and AV have the opposite sign. We first show that every zero of the Hugoniot

function corresponds to a shock state.
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Lemma 4.1: The Hugoniot function associated with the state (Vp, Sp) or (Pp, So) has no
zeros in the quadrants AP > 0, AV >0or AP <0, AV <0.
Proof: Let (V, P) be a point in the quadrant AP > 0, AV > 0. If S < S then

h(V,S) = h(Ve, So) + SaghdS +/V 8Vth‘ .
So o Jv, s
We note that (i) h(Vp, So) = 0, (ii) dshly, = T > 0, and (iii) dvh|s = —% (YAV/V +
AP/P)P < 0 when AV > 0 and AP > 0. Consequently, h(V,S) < 0.

On the other hand, if S > S, then

S P
W(P,S) = (Py, So) + | 0shdS +/ aphdp‘ .
So Py P, S
Now we note that (i) hA(Py,So) = 0, (ii) dshlp, = T > 0, and (iii) dphls =

(29)"Y (yAV/V + AP/P)V > 0 when AV > 0 and AP > 0. Consequently, h(P,S) > 0.

When AP < 0, AV < 0, similar arguments can be applied. Alternatively, inter-
changing the initial and final shock states reduces the problem to the case we have already
proved.

X X

The Hugoniot function reduces the problem of determining the Hugoniot locus to
finding the solutions of a single equation in two variables V and S, or P and S, rather
than solving the three jump conditions in four variable V', E, v and ¢. Lemma 4.1 implies
that the reduction does not introduce any extraneous solutions.

We next determine conditions on the EOS in order for the Hugoniot locus to be a
single curve connected to the initial state. The following result plays a key role.
Theorem 4.2 (Bethe-Weyl): For an asymptotically regular EOS, the Hugoniot locus

based on any state (Vj, Sp) intersects each isentrope at least once. Moreover, if G > 0
along an isentrope, then for S > Sy there is a unique compressive shock and for § < Sy
there is a unique expansive shock. Furthermore, for an entropy increasing compressive
shock |u — o] < ¢, and for an entropy decreasing expansive shock |u — o] > ¢. In
addition, if either condition —2 < T' or I' < 27 is satisfied everywhere, then there are
no entropy increasing expansive shocks and no entropy decreasing compressive shocks;

i.e., the Hugoniot locus intersects every isentrope exactly once.
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Fig. 4.1 A: Hugoniot function along isen- Fig. 4.1 B: Hugoniot function along isen-
trope with S > Sy. Solid circle corre- trope with S < Sp. Solid circle corre-
sponds to V = V}. sponds to V = V.

Proof: The original proof by Bethe used entropy as the basis for the analysis, and the
proof by Weyl used a convexity argument in the V-P plane. The two methods can be
combined by applying the convexity argument to an isentrope. The proof here follows that
given by [Menikoff & Plohr, 1989].

A point on the Hugoniot locus based at the state (Vp, Sp) and with a given value of S

corresponds to a zero of the Hugoniot function restricted to the isentrope
hs(V) = E(V,S) = E(Vo, So) + 5 [P(V,8) + R] - (V= Vo) , (4.4)

where Py = P(Vp, Sp). For an ideal gas EOS with v = 5/3 and initial state (Vp, Py) = (1, 1),
the restricted Hugoniot function is plotted in Fig. 4.1. The form of hg(V') is similar to
that of a cubic function. Fig. 4.1 A shows for S > Sy that hg(V') has a local maximum for
V < Vp and a local minimum for V' > Vj, while Fig. 4.1 B shows for S < Sy that hg(V') has
an inflection point but no local extremum. The crossover occurs at S = Sy when hg, hl
and R all vanish at V' = V. Figure 4.1 illustrates the canonical behavior that occurs

when the sign of P(V}, S) — P, is the same as the sign of S — Sy. The anomalous case has
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property S >S5 S < S comment
(i) hs(V) = —cocas V. — 0 asymptotics of EOS
(ii) hs(V) 00 asV — o0 asymptotics of EOS
(iii) hs(Vo) >0 hs(Vp) <0 T>0
(iv) hs(Vo) <0 h's (Vo) >0 canonical case
h's (Vo) >0 h's (Vo) <0 anomalous case
(v) (V) <0 for V<V,
RE(V) >0 for V >V, 9>0
(vi) additional constraint when isentropes cross| —2<T orI <2y
miny sy, hs(V) >0 - canonical case
——— maxy <y, hs(V) <0 anomalous case

Table 4.1: Properties of the restricted Hugoniot function.

the opposite behavior; hg(V') is monotonic when S > Sy and has two local extremum when
S < Sp. The strategy of the proof is to show that the qualitative features of the restricted
Hugoniot function are independent of the equation of state provided that G > 0. The
important properties of the Hugoniot function shown in Fig. 4.1 are listed in Table 4.1.
Before proving the general properties, we first show how they imply the result of the

theorem.

1. Existence of solution.
From the asymptotic behavior, properties (i) and (ii), the range of hg(V) is (—o0, c0).
It follows from continuity that the Hugoniot function has at least one zero.

2. § > Sy, entropy increasing shocks.
From property (iii) the Hugoniot function is positive at V = V4. For V <V}, from
property (v) the Hugoniot function is concave. Therefore, there is a unique entropy
increasing compressive shock. For V' > Vp, from property (v) the Hugoniot function is
convex. In the canonical case, the slope is initially negative. But by property (vi) the
Hugoniot function is always positive. In the anomalous case, the slope is initially pos-
itive and the Hugoniot function is monotonic. Hence, it is always positive. Therefore,

in either case, there are no entropy increasing expansive shocks.
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3.

(iv)

S < Sy, entropy decreasing shocks.

The case V > Vj and § < Sy is analogous to the case V < Vi and S > Sy. Conse-
quently, there is a unique entropy decreasing expansive shock. The case V < V; and
S < Sy is analogous to the case V. > V and S > Sy. Consequently, there are no

entropy decreasing compressive shocks.

Subsonic/supersonic state behind shock.

We will show that the subsonic/supersonic nature of the state behind the shock de-
pends on the sign of the slope of the Hugoniot function at its zero crossing. For now
we note that hlg(V) > 0 at the zero crossing when either S > Spand V < Vor § < S

and V > V.

We now prove the general properties of the restricted Hugoniot function.

By the asymptotic condition (EOS-1), for S fixed, P — o0, E — oo and E/P — 0 as
V — 0. It then follows from Eq. (4.4) that hs(V) = P-[E/P -1 (Vp = V)] = -
as V — 0.

By the asymptotic condition (EOS-2), for S fixed, P — 0 and £ — E, as V — oc.
Therefore, hs(V) = Eoo — Eg+ 2 Py - (V — Vp) = 00 as V — oo.

At the initial state the restricted Hugoniot function is given by

hS(VO) = E(%a S) - E(%aSO)
S

:/ TdS
So

The second line follows from the thermodynamic relation dE = —PdV + T dS. Be-

Vo

cause T > 0, the sign of the hg(Vp) is the same as the sign of S — S.

The derivative of the restricted Hugoniot function is
oP
/ _ 1 _ _ _
#(V) = —3(PY8) - Po— 5| (V) (45)
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At the initial state

W (Vo) = ~3 (P(Vo. 8) = P(Vo, )

Therefore, the sign of h'y(Vp) is the same as the sign of P(Vj, So) — P(V, S).
We note from the thermodynamic relation V dP = —yPdV + I'T' dS that
S

P(Vy,8) — P(Vy, Sp) = Vo—l/ 'TdS
So

Vo
Therefore, if I' > 0 then the sign of P(Vy,S) — P(Vo, So) is the same as the sign of
S — Sp. This is an important example of the canonical case.

(v) The second derivative of the restricted Hugoniot function is

o0?pP

A= 30 =Y%) | - (4.6)

Since we are assuming G > 0, the sign of A%5(V) is the same as the sign of V — V4.
For S = Sy, we note that h, ' and A" all vanish at V = V.
(vi) We first consider the canonical case when S > Sy and V' > V. By the thermodynamic
relation dEE = —P dV +T dS, the energy difference can be written as the path integral
s

E(V,S) — E(Va, So) = / T ds’
So

%4
- Pav’
\% Vo

So
When G > 0, the isentrope is convex and the integral of P dV is less than the area of

the trapezoid formed by the end points,

\4
/ Pav’
Vo

Therefore, we have the bound on the energy difference

<3 [P(W);SO)+P(VaSO)} -(V-VW) .

So

S
E(V,S)—E(VO,SO)>/ TdS'

~1 [P(Vo,So) + P(V, So)] (V=W .
So

\%

Substituting into Eq. (4.4) we obtain the bound on the Hugoniot function

S
he(V) > / Tds’
S

o]

+3 [PV - PVSY)] - (V=ve) . (@)

\%4
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For the canonical case with S > Sy, we note that [ T'dS > 0and P(V;, S) > P(Vj, Sp).
If the isentropes don’t cross then P(V,S) > P(V,Sy). It follows from Eq. (4.7) that
hs(V) > 0 for V. > V,. Therefore, condition (vi) is satisfied if the isentropes don’t
Cross.

When I' < 0, the isentropes can cross and we need a more refined estimate
for hg(V). Substituting the thermodynamic relation VdP = —yPdV +I'T dS into
Eq. (4.7) gives < S

hﬂV)>1;(L+%F 0

0 \%4
For V' > Vp, we note that 0 < (V — Vp)/V < 1. It follows that the integrand is

)Tds

positive when I' > —2. Therefore, I' > —2 is a sufficient condition for hg(V) > 0 and
condition (vi) to be satisfied whether or not the isentropes cross. For later use we
note that we have proved the following.
Lemma 4.2.1: If the isentrope Sy is convex and I' > —2 everywhere then there are
no specific volume increasing, entropy increasing shocks relative to any state along
the isentrope Sp.

Alternatively, an isentrope can be parameterized by P. The restricted Hugoniot

function can be written as

BS(P) = hS(V(PaS)) = H(P,S) _H(POaSO) o % [V(P,S)—{—VO} : (P_PO) :
In terms of the enthalpy, the fundamental thermodynamic identity can be expressed
as dH =V dP + T dS. We now consider the canonical case with § > Sy and P < P,.
A bound on hg(P) can be obtained using the same arguments we previously applied to

hs(V). Using both the fundamental thermodynamic identity and the thermodynamic
relation VdP = —y PdV + TI'T dS, we obtain

%Gﬁ>%de9 —%ﬁq&¢n—vgh&ﬂ-gﬁ—m

0 Po

S
' P—P
>/1@——-° )Tw
So 2y Py Py

For P < P, we note that 0 < (P, — P)/Py < 1. It follows that the integrand is

positive when I" < 2. Hence, I' < 27 is also a sufficient condition for condition (vi)

to be satisfied. For later use we note that we have proved the following.
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Lemma 4.2.2: If the isentrope S is convex and I' < 2v everywhere then there
are no pressure increasing, entropy decreasing shocks relative to any state along the
isentrope S.

The anomalous case with S < Sy and V < V} is proved in a similar manner. In
effect, an expansive entropy increasing shock and a compressive entropy decreasing
shock are related by interchanging the end states. Consequently, either lemma 4.1.1
or 4.1.2 is sufficient to exclude these non-standard shocks for a convex EOS. However,
we later show that for a non-convex EOS and some initial states, expansive entropy

increasing shocks are needed in order to construct a wave curve.

Finally, we relate the Mach number of the flow behind the shock to the sign of the

Hugoniot function at the zero crossing. From Eq. (2.19) and (1.12), we find

AP _op| _ AP _ P
AV T ov|yT Tav Ty
=p* [(0 —u)® =] (4.8)

=p"(0=A1) (0=A).

Then from Egs. (4.5) we obtain

hs

2
V—Vo

=p> [(c—u)?—-¢"] .

Therefore, the flow is supersonic when h's/(V —V;) > 0, and subsonic when h's/(V—V}) <O0.
Since ks > 0 at the zero crossing, it follows that the flow is subsonic for entropy increasing
compressive shocks and supersonic for entropy decreasing expansive shocks. We note that
if the isentrope is not convex then there could be more than one compressive shock, and

these would alternate between subsonic and supersonic.

X X

One important consequence of the Bethe-Weyl theorem follows from the continuity of

the Hugoniot function.
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Corollary 4.3: Suppose an EOS is convex. Then the connected branch of the Hugoniot
locus based on any state can be parameterized by S. Denoting the base state by the
subscript 0, P,(S) > Py and Vi, (S) < Vy for S > Sy while P,(S) < Py and V3(S) > V
for S < Sy. In addition, if either condition —2 < I' or I' < 2+ is satisfied everywhere

then the connected branch contains all possible shock waves.

The Bethe-Weyl theorem has another important consequence.
Corollary 4.4: For a convex EOS, an entropy increasing compressive shock satisfies the
characteristic criterion.

Proof: The Hugoniot equation (2.22) is symmetric in the end states. Hence the state
behind an entropy increasing compressive shock corresponds to the state ahead of an
entropy decreasing expansive shock. Moreover, the velocities are given by Eq. (2.19),
—~AP/AV = [p-(c—u)]? = [po-(0—up)]?, and are not affected by how the states are labeled.
Therefore, by the Bethe-Weyl theorem, for an entropy increasing compressive shock the
behind state is subsonic and the ahead state is supersonic. This is the characteristic
criterion, Eq. (2.36).

X X
Remark 4.5: For an explosive material, a chemical reaction releases energy. This energy

can be accounted for by shifting the energy in the Hugoniot equation (2.22)
E—-Ey=3P+P)-Vo-V)+Q,

where ) > 0 is the chemical energy released per unit mass. Consequently, the Hugoniot
locus for an explosive is determined by the level set () of the Hugoniot function with
the EOS of the reaction products and a meta-stable initial state (Vg, Eg, Py) satisfying
the EOS of the reactants. It follows from the non-monotonicity of the restricted Hugoniot
function shown in Fig. 4.1 A and the proof of the Bethe-Weyl theorem that the Hugoniot
locus for an explosive can intersect an isentrope with S > Sy three times; either twice
with V' <V and once with V' > Vj or vice versa. Moreover, the flow behind the solution
with the minimum V is subsonic, the maximum V is supersonic, and the middle V is
supersonic if V' < V and subsonic if V' > V. The multiple solutions gives rise to a

non-uniqueness in the choice of detonation and deflagration waves; see Ex. 4.5.
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For a convex EOS, we next consider which shocks on the connected branch of the Hugo-
niot locus should be admissible. From the Bethe-Weyl theorem, the expansive branch of
the Hugoniot locus is entropy decreasing and unphysical. In addition, an entropy decreas-
ing shock is unstable. To see this, consider a perturbation in which an expansive shock
wave is given a smooth profile. Because the characteristics along the profile diverge, the
profile spreads out and evolves into a rarefaction wave. In contrast, a compressive shock
is entropy increasing and stable. If a perturbation gave a compressive shock a smooth
profile then the convergence of the characteristics would cause the profile to steepen and
the shock to reform. Moreover, by corollary 4.4, entropy increasing shocks satisfy the
characteristic criterion and are 1-D stable. Similarly, an expansive rarefaction is stable
and a compressive rarefaction evolves into a shock wave. Therefore, for a convex EOS,
the locus of stable scale invariant waves connected to a given initial state consists of shock
waves in compression and rarefaction waves in expansion. Consequently, the expansive
entropy decreasing shocks and the compressive simple waves must be excluded from the
wave curve.

Asymptotic properties of the wave curve are required for the existence of a solution
to the Riemann problem. By the Bethe-Weyl theorem, for a convex EOS, the Hugoniot
locus can be parameterized by S. As a consequence, strong shock waves have the necessary
asymptotic properties.

Lemma 4.6: Consider an asymptotically regular EOS. Suppose the connected branch of
a Hugoniot locus extends to S — oo. Then for sufficiently large S, the projection of the
Hugoniot locus in the u—P plane extends to P = oo and u = 4oo0; 4+ for right facing
wave and — for left facing.

Proof: Let the Hugoniot locus be based on the state (Vp,Sp). From the proof of the

Bethe-Weyl theorem, for § > Sy there is at least one compressive shock. Let us denote

by Pp(S) the minimum P of a compressive shock with entropy S. Since the shock is

compressive, Pp(S) > P(Vy,S). For an asymptotically regular EOS, P(V;,S) — oo as

S — oo. Hence P,(S) — 00 as S — oc.
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Similarly, Fp(S) > E(Vy,S) — oo as § — 0o. From Ex. 2.6 C, the equation
AE =1 (Au)® + Py (Vo — V1) . (2E.7)

can be derived from the Hugoniot jump conditions. Therefore, |up(S)| — co as S — oo.

X X

The results up to this point completely determine the wave curve for a convex EOS.
They can be summarized as follows.

Theorem 4.7: For an asymptotically regular convex EOS satisfying either condition
—2 < T orI' < 2veverywhere, the wave curve based on any state consists of compressive
shock waves and expansive rarefaction waves. Moreover, the wave curve satisfies the
asymptotic properties that ensure the existence of a solution to any Riemann problem.

The monotonicity conditions on the wave curve needed for uniqueness of a solution to the

Riemann problem are analyzed in the next subsection.

The first step in generalizing to a non-convex EOS is to find conditions such that
any Hugoniot locus consists of a single connected branch. It is instructive to view the
convex case from an alternative perspective. The Bethe-Weyl theorem implies that the
initial state is the only sonic point on the Hugoniot locus. From Eq. (4.3), if a point on
the Hugoniot locus is not sonic then 9y h|g # 0. It follows from the implicit value theorem
that the Hugoniot locus can locally be parameterized by S. Because there is a unique
point on the Hugoniot locus for each S, the Hugoniot locus can globally be parameterized
by S. The key to generalizing this line of reasoning is to analyze the bifurcation points of
the Hugoniot locus.

The Hugoniot locus is the zero level set of the Hugoniot function. By the implicit
value theorem, the Hugoniot locus is locally a curve in phase space, except at bifurcation
points where the coefficients of both differentials of the Hugoniot function vanish. Hence,

from Eq. (4.3), the Hugoniot locus bifurcates if and only if

V. AP | AP

—5 2y = 7= (4.9)
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In particular, from Eq. (4.8), at a bifurcation point the flow behind the shock must be sonic.
We note that the connected branch of the Hugoniot locus is sonic at the initial state but
that the initial state is not a bifurcation point because dgh(Vp, Sp) = 8SB(PO, So)=T > 0.

Two conditions on an EOS can be used to exclude any bifurcation point from the

Hugoniot locus. From Eq. (4.3b), if I' < 2v then for pressure increasing shock waves

r AP
~(1-5- 5 )T>0.
i 2y P

Hence the condition T' < 2v excludes bifurcation points with P > F,. Moreover, the

0 <AP/P <1 and
oh
oS

implicit value theorem implies the Hugoniot locus can locally be parameterized by P and
hence there can be no local pressure extremum on the Hugoniot locus with P > F.

Similarly, from Eq. (4.3a), if —2 < T" then for expansive shock waves 0 < AV/V < 1

A
:(1+§F—V>T>O.
v V

Hence the condition —2 < I' excludes bifurcation points with V' > V,;. Moreover, the

and

oh
0S

implicit value theorem implies the Hugoniot locus can locally be parameterized by V and
hence there can be no local specific volume extremum on the Hugoniot locus with V' > V.
The zero isotherm provides the following boundary condition.

Lemma 4.8: Suppose an EOS is asymptotically regular. For any state (Vp,Sp) with
To > 0, there is a unique shock on the zero isotherm. The shock on the zero isotherm
has specific volume V, > V. Moreover, the Hugoniot function restricted to the zero
isotherm is negative for V' < V, and positive for V' > V,.

Proof: There are two cases to consider. Suppose the zero isotherm corresponds to the

zero isentrope. Then the zero isentrope is convex. The restricted Hugoniot function along

S = 0 corresponds to the case of the Bethe-Weyl theorem shown in Fig. 4.1 B. Hence

there is unique expansive shock. The other possibility allowed by (EOS-5) is that the zero
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isotherm corresponds to the union of the lines V = 0 and P = 0, and that F = E,,;;, along

the zero isotherm. Along V = 0, the Hugoniot function is
h=Emnin—Eo—3(P+P) - Vp<0.
Hence there can be no shock with V= 0. Along P = 0, the Hugoniot function is
h=FEmn—FEo—3P-(Vo—-V).

Hence, there is a unique shock and its specific volume is given by V, = 2 (FEy — Ewmin)/FPo-
Since the Hugoniot function restricted to the zero isotherm has only one zero, to be com-
patible with the asymptotics as P — oo it must be negative for V < V,, and as P — 0 it
must be positive for V > V.

X X
Excluding bifurcation points on the Hugoniot locus leads to the following result.
Theorem 4.9: Suppose an EOS is asymptotically regular and —2 < I' < 27 is satisfied

everywhere. Then the Hugoniot locus based on any state consists of a single curve con-
nected to the initial base state. Moreover, the compressive branch can be parameterized
by P and extends upto P = oo, while the expansive branch can be parameterized by V
and extends down to the zero isotherm.
Proof: Let the subscript 0 denote the base state of the Hugoniot locus. We first consider
the quadrant AP > 0, AV < 0 and show that the Hugoniot locus can be parameterized
by P. It follows from the condition I' < 2y that dgh|lp > 0 for P > P,. Since (P,S)
parameterizes thermodynamic phase space, there can be at most one point on the Hugoniot
locus for any P, > Py. By lemma 4.8, hp—o(P1) < 0 for P, > Fy. By (EOS-2), for any
P, > P, there is a S; > Sy such that P, = P(Vj, S1). Therefore,
~ S1
R(P1,51) = h(V, 51) = / TdS >0 .
So
By continuity there must be an S’ such that A(Py,S’) = 0. Hence there is a unique shock

for every P; > P,. Since 33?1\ p > 0, the implicit value theorem implies that any portion
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of the Hugoniot locus can locally be parameterized by P. Because there is a unique shock
for each P > Py, the connected branch of the shock Hugoniot extends upto P = oo.

We next consider the quadrant AP < 0, AV > 0 and show that the Hugoniot locus
can be parameterized by V. It follows from the condition —2 < T" that dghly > 0 for
V > Vp. Since (V, S) parameterizes thermodynamic phase space, there can be at most one
point on the Hugoniot locus for any V > V. By lemma 4.8, there is a V, > Vj on the zero
isotherm such that the restriction of the Hugoniot function to the zero isotherm is positive
for V> V, and negative for V' < V,. Since the Hugoniot function increases above the zero
isotherm, there are no shocks with V' > V,. By (EOS-4), for any V; > Vj there is a S}

such that Vi = V(P, S1). Therefore,

S1
h(Vl, Sl) = h(PO, Sl) = / TdS >0 .
So

Hence there is a unique shock for any Vy < V < V,. Since dsh|y > 0, the implicit value

theorem implies that any portion of the Hugoniot locus can locally be parameterized by V.

Because there is a unique shock for each Vo < V < V,, the connected branch of the shock

Hugoniot extends down to the zero isotherm at V.

X X
From theorem 4.9, P — 0o on the compressive branch of the Hugoniot locus. This

implies the shock speed goes to infinity since

o] =5

>(P—Py)/Vy 00 as P— 0.
With a similar argument we can obtain the following result for a convex isentrope.
Lemma 4.10.1: Suppose the initial state lies on a convex isentrope. If I' < 2+ is satisfied
everywhere then a pressure increasing shock is entropy increasing, and if —2 < I' is

satisfied everywhere then an expansive shock is entropy decreasing.
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Proof: From the proof of the Bethe-Weyl theorem, the Hugoniot function restricted to

the isentrope Sy satisfies:

h(P,So) <0, for P> Py

h(V, So) >0, for V>V,

When I' < 2v, if P > Py then dsh > 0. Hence, for P > Py the Hugoniot function iNL(P, S)
can only be zero for § > Sy. Similarly, when —2 < T', if V' > Vj then dsh > 0 and the
Hugoniot function A(V,S) can only be zero for S < Sy.
X X
We can also derive a general result on the asymptotic behavior of the Hugoniot locus.
Lemma 4.10.2: Suppose an EOS is asymptotically regular and I' < 2v is satisfied
everywhere. Then the compressive branch of the Hugoniot locus has the asymptotic
property

lim inf S3(P) = oo .

P—oo

Proof: By theorem 4.9 the compressive branch of the Hugoniot locus can be parameterized
by P. From the proof of the Bethe-Weyl theorem, for a given S; > Sy the restricted Hugo-
niot, function satisfies limp_, o kg, (P) = —oc. Hence, there is a P; such that h(P,S;) < 0
for P > P;. When I' < 27, dsh > 0 for P > P,. Hence, Sp(P) > S; for P > Py.
Therefore, liminfp_, o, Sp(P) = oc.

X X

We note that lemmas 4.10.2 and 4.6 imply that |u| — oo as P — oo.

For a non-convex EOS, sonic points can occur on the Hugoniot locus. A sonic shock
can be joined with a rarefaction to give a scale invariant composite wave. It turns out that
the composite waves are necessary for constructing the wave curve. We next show that a

sonic shock corresponds to a local entropy extremum on the Hugoniot locus.
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Lemma 4.11: On the Hugoniot locus, at a local entropy extremum

AP AP dP

Sl e 4.10
AV 1% av, ( )

Moreover, the flow is sonic relative to the shock front; i.e.,
lo—ul=c. (4.11)

Proof: From Eq. (4.3), at an entropy extremum yP/V = —AP/AV. By Eq. (4.8) the

flow is sonic. In addition, from Eq. (4.2), at an entropy extremum dP/dV|, = AP/AV.

Together these two conditions give Eq. (4.10).

X X
The converse of the previous lemma requires additional restrictions on I'.

Lemma 4.12: An entropy extremum occurs on the Hugoniot locus if any of the following

conditions are satisfied:

AP 4P|
AV av|,’
_ vP AP |4 .
lo—ul =c or v = TAY and I # 2AV or F7é2'yAP,
~P dP
—=——| , and TI'#0.
V av |,

Proof: The first condition follows from Eq. (4.2) and the second condition from Eqgs. (4.8)
and (4.3). From the thermodynamic relation VdP = —yPdV + T'T'dS, we obtain

dpP

ary _ P dS
av

— I'T —
v T

h

and the third condition follows.

X X
From these lemmas and Eq. (4.9), the Hugoniot locus can be parameterized by V or P

in a neighborhood of a sonic point that is not a bifurcation point. This observation allows

us to generalize the previous two lemmas. The following generalization will enable us to

define a convenient parameterization of the shock Hugoniot and will play a crucial role in

determining the wave curve for a non-convex EOS.
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Theorem 4.13 (Bethe-Wendroff): Suppose the EOS is asymptotically regular and —2 <
I' < 27 is satisfied everywhere. For any sonic point on the Hugoniot locus, other than
the initial state, the following are equivalent: (a) (0 — u)? = ¢?; (b) do/dV = 0;
(c) dS/dV = 0. Moreover, (o — u)? — ¢?, do/dV, and dS/dV vanish to the same order,
and the Hugoniot locus is tangent to the rarefaction curve.

Proof: By theorem 4.9, the Hugoniot locus consists of a single curve connected to the ini-

tial state. Moreover, there are no bifurcation points on the Hugoniot locus. Conditions (a)

and (c) follow from lemmas 4.11 and 4.12.

We recall that the wave speed is given by
[po - (0 — uo)]2 = —-AP/AV | (2.19)
and the particle velocity is given by
(Au)? = —(AP) - (AV) . (2.23)

Taking the derivative along the Hugoniot of Eq. (2.19), we find

pg.(o'_uo).;l_;_( dP, AP)

By lemma 4.1, away from the initial state AV # 0 and AP # 0. From lemmas 4.11

and 4.12 at a sonic point

—dP,/dV + AP/AV =0 .

Therefore, do/dV = 0 and condition (b) is satisfied.

Taking the derivative along the Hugoniot of Eq. (2.23), we find

du, | AV (dPh+AP>
v~ 2 Au \qv T AV/"
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At a sonic point, by lemma 4.11 this reduces to

1

From the thermodynamic relation dE = —P dV + T dS, at a sonic point dE,/dV = — P,
because dSp/dV = 0. Comparing with Eq. (2.13) we find that the Hugoniot locus at a
sonic point is tangent to the rarefaction curve.

To show that the specified quantities vanish to the same order, following lemma 2.3 we
take repeated derivatives of the Hugoniot function until the first non-vanishing derivative
of S is obtained. The first derivative, Eq. (2.27), gives one of the conditions for a sonic

point in lemmas 4.11 and 4.12. The second derivative, Eq. (2.28), at a sonic point reduces

to
d?sy, d’P,,
2T =-—-AV. .
dv? dv?
If the second derivative vanishes then the third derivative, Eq. (2.29), reduces to
d3s,, a3 P,
2T —o = —AV - —= .
dvs v dvs3

By induction, it can be shown that

Lemma 4.13.1: At a sonic point on the Hugoniot locus, the first non-vanishing derivative

of S, with respect to V' is equal to —% AV/T times the corresponding derivative of Pj,.
From the thermodynamic relation, V dP = —y PdV +T'T dS, we obtain

oP dp;, dsy,
—| = v=t-rT7=t
v~ av av

Taking the derivative along the Hugoniot locus, using the relation

4 _ 0 ds o
dv. oV 4V 9§’

yields at a sonic point

52p 2P, 225,
Yol —yiih _ppler
vz, = e
AV d2P,
_ 1p="
=V (Hzr % ) av?

We note that the factor V - (1 + T AV/V) is non-zero when the sonic point is not a

bifurcation point. Again by induction, it can be shown that
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Lemma 4.13.2: At a sonic point on the Hugoniot locus, the first non-vanishing partial
derivative of P with respect to V at fixed S is equal to V - (1 + 3 AV/V) times the
corresponding derivative along the Hugoniot locus of P, with respect to V.

Let n be the power of the lowest non-vanishing derivative of Py; i.e., (d/V)™" Py, # 0. At
a sonic point, n > 2. From lemma 4.13.1, n is the smallest power such that (d/dV)"S} # 0.
By taking repeated derivatives of Eq. (2.19), it follows that n is the smallest power such
that (d/dV)"c # 0. Similarly, by taking repeated derivatives of Eq. (4.8), it follows that
n—1 is the smallest power such that (d/dV)"~[(c —u)>—c?| # 0. Therefore, (0 —u)?—c?,
do/dV, and dS/dV vanish to the same order.
X X

We note that the Bethe-Wendroff theorem can be extended to any hyperbolic system
of conservation laws. For a proof in the general case see [Wendroff, 1972], [Menikoff &
Plohr, 1989, Appendix B] or [Isaacson, Marchesin, Palmeira & Plohr, 1992].

Locally the Hugoniot locus can be parameterized by a single variable which we denote

by a. Let the dimensionless parameter o be determined by the relation

AV V AP
TdS=—5— SN
ds 2y ['y PAV] PV da
AV
== —%7 [62 — (0’ — U)z] dOz . (4.12)

At the initial state, both AV and ¢ — (0 — u)? vanish. This is compatible with the weak
shock limit; i.e., the entropy is third order in shock strength, Eq. (3.16). Away from
the initial state, from the Bethe-Wendroff theorem, at a local entropy extremum dS and
c? — (o — u)? vanish to the same order. Therefore, the connected branch of the Hugoniot
locus is a single valued function of «; i.e., o varies monotonically even when the entropy
has a local extremum.

On the Hugoniot locus, the differential of all the variables can be related to the
parameter «. From Egs. (4.3), (2.19) and (2.23) we obtain the following (m, o and u for

a right facing wave):
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dm:pOdJ:2VAP [ — (o0 —u)?] mda, (4.13)
AV
dV = — [1 + %I‘T] Vda, (4.14)
P AV
E=|=—-3(y- P 4.1
d {P 5 ( V } Vda, (4.15)
dP = {'y %r—} Pda (4.16)
AP V AP| P

We may choose @ = 0 to correspond to the initial state (Vp, So, ug). Then from Egs. (4.14)

and (4.16), o > 0 corresponds to pressure increasing compressive shocks (the quad-

rant AP > 0, AV < 0), while o < 0 corresponds to pressure decreasing expansive shocks

(the quadrant AP < 0, AV > 0).

Remark 4.14: Given an incomplete EOS, P = P(V, E), the Hugoniot locus can be deter-
mined parametrically by integrating a pair of ODEs, Eqs. (4.14) and (4.15). There are
several drawbacks with this approach. First, errors can accumulate from the numerical
integration. This could be corrected by using the solution of the ODEs as the initial
guess for an iterative solver of a zero of the Hugoniot function. Second, the functions to
be integrated depend on v and I', and hence on derivatives of the EOS. For some model
EOS, it is not easy or expensive to compute these derivatives accurately. Third, for a
single point point on the Hugoniot locus with a given value of a quantity such as P or u,

it is computationally expensive to perform the numerical integration.

The differential relations, Eqs. (4.12)—(4.17), can be used to determine derivatives of
the state variables along the Hugoniot locus. One example is the slope of the Hugoniot
locus in the V—P plane

- <dP) _y—1irap/p (4.18)

P \adv 1+ 1iravyv '
This implies that I' can be determined from measurements of both the sound speed and

the shock Hugoniot. In addition, it can be used to determine the asymptotic compression

ratio of a strong shock.
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Proposition 4.14.1: Suppose an EOS is asymptotically regular and I" < 2+ is satisfied
everywhere. Then as P — oo, the compression ratio of a shock V/V;(P) approaches a
constant.

Proof: By theorem 4.9 the compressive branch of the Hugoniot locus can be param-

eterized by P. Since 0 < V,(P) < Vp, we can define Vi = liminfp_, V4(P) and

Vo = limsupp_,, Vi(P). We need to show that V7 = V5. If V; < V5 then there is a V,

such that V3 <V, < V5. Let P, > P, be the ascending sequence such that Vj(P,) = V,.

Then dV},/dP(P,) must alternate in sign; i.e., proportional to (—1)". Because I' < 2+,

from Eq. 4.18 with P > P, the sign of dV},/dP is minus the sign of 1+ i1T'AV/V. From

the asymptotic condition (EOS-3), as P,, — o0
1+ iTAV/V 51— 1T (Vo — Vi) /Vi .
If the right hand side is not zero then for sufficiently large P the Hugoniot locus can not

cross V,. Therefore, consistency requires that 1 — %f‘oo (Vo —V4)/Vi = 0 and it follows that

. Vo 2
1 =1 - ) 4.1
AT IR (4.19)

We note, in terms of 7., = Too+1 Eq. (4.19) corresponds to the limiting compression ratio

for an ideal gas EOS; prn/po = (Yoo +1)/(Foo — 1).

X X

We also note that the limiting compression ratio and mass conservation implies in the limit

of strong shocks, us/u — (s + 2)/2.

Remark 4.14.2: The EOS is a function of two variables and that limits can depend on the
direction a curve approaches infinity. In particular, along the Hugoniot locus as P — oo

it follows from the Hugoniot equation that Ex(P)/(VoP) = (I'ec +1)/ (s +2) > 0. In

contrast, the asymptotic condition (EOS-1) implies that along an isentrope E/P — 0.
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Other important relations can easily be derived from the differential relations. For

example, combining Eqs. (4.12) and (4.13) we obtain
(AP -AV)% - (=AV/Vp) do = L (AV)2d(m?) = T dS . (4.20)

We note that do is proportional to dm. In fact, dm = pgdo. This is not surprising since
the mass flux is the Lagrangian wave speed. Furthermore both the mass flux and the wave

speed are monotonic if and only if the entropy is monotonic.

4.2 Monotonicity of Hugoniot Locus

The parameteriztion of the Hugoniot locus, which we derived in the previous section,
can be used to relate constraints on an EOS to monotonicity properties of the Hugoniot
locus. We consider only the connected branch of the Hugoniot locus. It will turn out that
the needed monotonicity conditions will imply that the Hugoniot locus is indeed a single
connected branch. Since we are not considering reactions, for simplicity we may assume
the origin of E has been chosen such that F.,i, = 0.

We begin by analyzing compressive shock waves. From the Hugoniot Eq. (2.22)
and (EOS-2) we obtain a bound on AV

0<—-AV =AE/P <2E/P. (4.21)

This leads to the following monotonicity relations:
1. Convex EOS, G > 0.
From the Bethe-Weyl theorem, entropy is monotonic. Moreover, by corollary 4.4,
the characteristic condition, Eq. (2.36), is satisfied and compressive shock waves are
stable in one-dimension. Furthermore, from Eq.(4.20), mass flux and wave speed are
monotonic.
2. Strong condition, I' < PV/E.

From Eq. (4.14), the specific volume is monotonic if and only if

AV
1+§1‘7>0.
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From Eq. (4.21) we have

1+il— > PV > ’
2tV 1, ifI'<0 .

Therefore, the strong condition is sufficient for monotonicity of V. The form of the

AV {1—r£- ifTr>0 ;

wave curve, projected in the V-P and u—P planes, is shown in Fig. 4.2A.
3. Medium condition, ' < v+ 1 PV/E.

From Eq. (4.15), the specific energy is monotonic if and only if

vl
>
<

—N

[ = DN

+
)
|
=

!

e
=N
ﬁ
\%

2

Therefore, the medium condition is sufficient for monotonicity of E.

From Eq. (4.17), the particle velocity is monotonic if and only if

From Eq. (4.21) and 0 < AP/P < 1, we have
AP VAP AP ( , PV )

P PAV P 2 g
Therefore, the medium condition is sufficient for monotonicity of both E and u. The
form of the wave curve, projected in the V-P and u—P planes, is shown in Fig. 4.2B.
4. Weak condition, I' < 2+.

From Eq. (4.16), the pressure is monotonic if and only if
v — % I'AP/P>0.

From 0 < AP/P < 1, we have
_1
7—%FAWP>{7 R
v, ifI'<0 .

Therefore, the weak condition is sufficient for monotonicity of P. The form of the

itl'>0 ;

I

wave curve, projected in the VP and u—P planes, is shown in Fig. 4.2C. Theorem 4.9
shows that the weak condition also implies that all compressives shocks lie on the

connected branch of the Hugoniot locus.
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FIGURE 4.2

Form of Hugoniot locus in VP plane and u—P plane.
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The weak and medium conditions were identified in [Smith, 1979], and the strong
condition in [Menikoff & Plohr, 1989]. To show that these conditions are related as the
names imply we need the following result:

Lemma 4.15 (Smith): Suppose a convex EOS satisfies (EOS-2). If F.y, > 0, then
v > %PV/ E is satisfied everywhere.

Proof: Along an isentrope, the specific energy can be expressed as

Vi
E(V,S)=E(V,8)+ [ P(V',S)dV’
1%
> / PV, S)dv’
14
S 1PW.S). P(V,S) _ PV

—0P/oV]s 2y

The first inequality follows from E(V,S) > Enin. The second inequality is a consequence

of the convexity of the isentrope; the integral is less than the area of a triangle formed by

the tangent to the isentrope.

X X
It then follows that

Corollary 4.16: For a convex EOS satisfying (EOS-2) with F,;, > 0, the strong condi-

tion implies the medium condition implies the weak condition.

When the strong, medium or weak conditions are satisfied everywhere in thermo-
dynamic state space, the monotonicity properties are global, i.e., everywhere along the
Hugoniot locus for any initial state. In this sense, they are sufficient conditions for mono-
tonicity. They are necessary in the following weak sense. If they are violated at some
point in state space, then for an initial state along the backwards Hugoniot as Py — 0 the
Hugoniot locus will loss monotonicity (provided that the zero isotherm isn’t reached first).
However, for a sufficiently weak shock, the Hugoniot locus is monotonic even at points
for which the EOS conditions are violated. Thus, these simplified EOS conditions do not
alway imply loss of monotonicity.

Monotonicity of both P and u are needed in order that the solution to any Riemann

problem is unique. From the results upto this point we can conclude
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Theorem 4.17: For an asymptotical regular convex EOS with E\,;,, > 0, the medium con-
dition is sufficient for uniqueness of the Riemann problem. Without En;, > 0, a slightly
stronger modified medium condition, I' < v, would be sufficient for uniqueness of

the Riemann problem.

We note one example of non-uniquess when the the medium condition is violated.

Suppose the weak condition is true and

8P/(9’U,|S > —8P/6u|h . (4.22)

Then a single shock can split into two waves; a shock of the same family and either a shock
or a rarefaction of the opposite family. The wave diagram and the corresponding wave
curves are shown in Fig. 4.3.

An ideal gas provides an example of an EOS that satisfies the strong condition. How-
ever, monotonicity of V' is not typical. As an example consider air. At room temperature,
air is composed mostly of diatomic molecules and its EOS is well approximated by an
ideal gas with v = 7/s. When shock heating causes dissociation and ionization to occur,
v drops below 1.2. For a strong shock in an ideal gas (Ex. 2.7) the compression ratio
is Vo/Vs = (v +1)/(y — 1). Thus variations in 7 from shock heating can lead to local
extremum in V. Shocks in air strong enough to cause dissociation and ionization occur in
applications involving supersonic aircraft and spacecraft re-entry (hypersonic flow).

The equilibrium EOS of a chemically reacting gas can be determined using the princi-
ples of statistical mechanics or thermodynamics; i.e., varying the composition to conserve
particles and minimize the Gibbs free energy G(P,T) = E + PV — TS, see for example,
[Zel'dovich & Raizer, 1966] chpt. III.1 or [Anderson, 1989] chpt. 11. The dissociation of
a gas can be treated as an equilibrium mixture of thermally perfect gases for the atoms
and molecules. The composition is determined from the law of mass action. Similarly, an

ionized gas can be treated as an equilibrium mixture of electrons and ions. In this case,
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FIGURE 4.3
Shock splitting when 0P/0u|s > —0P/0ulp > 0.
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the law of mass action leads to the Saha equation for the composition. The equilibrium

composition and Dalton’s law of partial pressures gives a good approximation for the EOS.
It is natural to ask if the medium condition is violated whether the non-uniqueness

of the Riemann problem can be resolved. However, instabilities of shock waves raise more

serious questions. There are several types of instabilities to consider.

1. 1-D stability.

The characteristic condition, Eq. (2.35) or Eq. (2.36), is necessary for 1-D stability.
As described in Lecture 2, 1-D shock stability is equivalent to having a well behaved
interaction between a shock wave and an acoustic wave from either ahead or behind
the shock front. For a convex EOS, the Bethe-Weyl theorem implies that compressive
shock waves satisfy both the entropy condition and the characteristic criterion. In
this case the characteristic condition is sufficient for 1-D stability. For a non-convex

EOS we later show that an additional condition is needed.

2. 2-D corrugation stability.
In shock tube experiments, gases at different pressures are separated with a membrane.
It is difficult to break a membrane in a controlled and reproducible manner. Yet
after a short distance of travel the shock waves generated are very nearly planar.
To understand the stability of a planar shock wave, consider a rippled or corrugated
interface. The troughs correspond to diverging waves and the valleys to converging
waves. Converging and diverging waves can be analyzed using the 1-D fluid equation
with geometric source terms; i.e., cylindrically or spherically symmetric geometry.
The speeding up of converging waves and the slowing down of diverging waves tends
to stabilize the shock front. The condition for corrugation instability is equivalent to
the condition for a shock wave to split into two waves, Eq. (4.22); see e.g., [Fowles,
1993] or [Menikoff & Plohr, 1989, section 6] and reference therein. When the medium

condition is satisfied, shock waves are stable to corrugation perturbations.
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3. 2-D stability to transverse waves.
There is another form of 2-D instability in which transverse waves propagate along the
shock front. An instability of this form is observed for detonation waves; see [Fickett

& Davis, 1979], chapter 7. The conditions for 2-D stability can be expressed as

AP dm? v— (TC'+1)AP/P
mz ap 20 R e =20

see e.g., [Fowles, 1993] or [Menikoff & Plohr, 1989, section 6] and reference therein. For
compressive shocks, the first condition implies that entropy increases with pressure.
When an EOS satisfies the weak condition, the first condition is equivalent to the

characteristic condition. The second condition reduces to [Fowles, 1981]

v> (T+1)AP/P . (4.23a)

Consequently, a sufficient condition for 2-D stability of a compressive shock is

F<y-1; (4.23b)

We refer to this as the stability condition.

The stability condition is also necessary in the same sense as described for the mono-
tonicity conditions. Weak shocks satisfy Eq. (4.23a). Moreover, the viscous profile of a
weak shock is stable, see [Liu, 1986]. The stability condition is related to having a well
behaved interaction for an incoming acoustic wave at an angle to the shock front. When
the stability condition is violated, the reflection coefficient blows up and an infinitesimal
perturbation can generate a finite outgoing wave [Fowles, 1981]. In Lecture 8 on 2-D wave
patterns, this is discussed in more detail.

In addition to stability, Eq. (4.23b) implies that the modified medium condition and
the weak condition are satisfied. Hence both P and w are monotonic for compressive
shocks. Because only compressive shocks occur in the wave curve for a convex EOS, we

are led to the important conclusion.
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Theorem 4.18: For an asymptotically regular convex EOS, if I' < v — 1 then every
Riemann problem has a unique solution. Moreover, any shock wave in the solution is
stable in both 1-D and 2-D.

In fact, Eq. (4.23a), which is both necessary and sufficient for 2-D stability, implies that

dP/da > 0 and du/da > 0. Hence, 2-D shock instability would be a problem before the

question arises of resolving non-unique solutions of a Riemann problem.

For a non-convex EOS, entropy increasing expansive shocks are need to construct wave
curves based on some states. In this case, we will need additional monotonicity properties
for the expansive branch of the Hugoniot locus. These properties can be conveniently
stated in terms of the parameterization we derived in section 4.1.

Lemma 4.19: Suppose —2 < I'. Then the expansive branch of the Hugoniot locus has
the following properties.
(i) dV/da < 0.
(ii) The state behind the shock is subsonic if and only if dS/da < 0.
(iii) If dS/da < 0 then dP/da > 0 and du/da > 0.
Proof: On the expansive branch of the Hugoniot locus, AV > 0.
(i) From Eq. (4.14),
dV/da= — (1+ 3TAV/V)-V
For expansive shocks, 0 < AV/V < 1. When I" > —2, it follows that dV/da < 0.
(ii) From Eq. (4.12),
TdS/da = — 1 (AV)V) - [* — (0 —u)?] .
For subsonic flow, (o —u)? < ¢?. Hence, dS/da < 0 if and only if the flow is subsonic.

It also follows from Eq. (4.12) that v+ (V/P)-(AP/AV) > 0 if and only if dS/da < 0.
(iii) From Eq. (4.16), we have

1 dP AP
P a2
(., V. APY VAP (L AV
“\UTP Aav) P AV 2y
vV AP p-(oc—u)? 1AV
- v : 2
<7+P AV)+ P Lal
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The first term is positive because of the assumption that dS/da < 0, and the second
term is positive because dV/da < 0. Therefore, dP/da > 0.

From Eq. (4.17), we have

2m  du I‘AP AP
P da T P AV

AP V AP LAV
= (v 5av) ey (1Y)

<7+_ AP)_i_2p-(a—u)2 <1+1F£)

v,
P

P AV P |4

Again each term is positive. Therefore, du/da > 0.

X X

4.3 Wave Curve for Non-Convex EOS

For a non-convex EOS the Hugoniot locus is still well defined. With the condition,
—2 < T < ~, the Hugoniot locus is a single connected curve. Moreover, P and u are
monotonic on the compressive branch. However, not all entropy increasing compressive
shocks satisfy the characteristic criterion. As a consequence, some shocks are unstable and
can not be included in the wave curve. Furthermore, the rarefaction waves only exist upto
a point on the isentrope at which G = 0. As a consequence, the rarefaction branch of the
wave curve is incomplete. Insufficient waves can give rise to non-existence of a solution to
the Riemann problem.

Another complication results from the existence of sonic shocks. This gives rise to
additional scale invariant waves that are composites of shock waves and simple waves; either
compressive shocks and compressive simple waves, or expansive shocks and rarefaction
waves. A composite may consist of (i) a simple wave followed by a shock in which the
ahead state is sonic, (ii) a simple wave preceeded by a shock in which the behind state is
sonic, (iii) a doubly sonic shock both preceeded and followed by simple waves, or (iv) an

alternating sequence of simple waves and doubly sonic shocks possibly starting or ending

Lecture 4.2 —146— Lecture 4.3



Lecture 4 Constraints on Equation of State Lecture 4

with a one sided sonic shock. Typical composites are illustrated in Fig. 4.4.1. Too many
waves can give rise to non-uniquess of a solution to the Riemann problem.

In this section, we show that there are just enough stable scale invariant waves for
existence and uniqueness of a solution to any Riemann problem. Shock waves that are
stable to one-dimensional perturbations must satisfy an extended entropy condition. The
E-condition was introduced for scalar hyperbolic equations by Oleinik and generalized to
hyperbolic systems by [Liu, 1975]. For a right facing wave to satisfy the E-condition,
its shock speed must be greater than the speed of any shock that lies on the Hugoniot
locus between the initial state and the final state. For the fluid equations, this condition
has a simple geometric interpretation in the V—-P plane. Let 0 denote the ahead state
and 1 denote the behind state. A compressive shock satisfies the E-condition, if and only
if the portion of the Hugoniot locus between states 0 and 1 lies below the Rayleigh line
(the straight line connecting states 0 and 1). Similarly, an expansive shock satisfies the
E-condition if and only if the Hugoniot locus between states 0 and 1 lies above the Rayleigh
line.

As a motivation for the E-condition, consider a perturbation in which a compressive
shock wave is given a smooth profile. For a non-convex EOS, the characteristic velocity
along the profile does not necessarily vary monotonically. Some characteristics converge,
steepening a portion of the profile, while other characteristic diverge and spread out a
portion of the profile. The converging characteristic lead to the formation of a shock.
As the profile evolves, other characteristics impinge on the shock front from behind and
increase the shock strength. However, at some point the shock speed may exceed the
the characteristic velocity in the remainder of the profile. In this case, the characteristics
behind the front can not overtake the shock and a composite forms. As it evolves in time,
a composite spreads out and is stable to local perturbations.

The E-condition implies that a shock wave has the property:
(u~+ ¢)behind = @ = (U +¢) head » for right facing wave; (2.35'a)
(4 —)pehind <7 < (U —¢) head » for left facing wave. (2.35'D)
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FIGURE 4.4.1

Right facing composite waves in fluid with non-convex EOS. Sketches of pressure
profiles that may occur for an initial state with Gy > 0.
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vi ol ates X\
characteristic
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FIGURE 4.4.2

Sketch of Hugoniot locus for a non-convex equation of state. Sonic points are in-
dicated by open circles. The dotted lines are the Rayleigh lines through the sonic
points. The Hugoniot locus between the sonic points violates the characteristic
criterion. The E-condition is satisfied everywhere on the Hugoniot locus except
for the portion marked as corresponding to shocks with no profiles.

Thus, the characteristic condition is satisfied with the strict inequalities replaced by in-
equalities; i.e., either the state ahead or behind the shock front may be sonic. However,
a shock can satisfy the characteristic condition and not the E-condition. In addition, it
can be shown that with viscosity and heat conduction steady-state shock profiles exist for
only those shocks that satisfy the E-condition. In the regions of phase space in which
I' < 0, restrictions are required on the Prandtl number (dimensionless ratio of viscosity
to heat conduction). We note that the steady-state profiles imply shocks satisfying the
E-condition are entropy increasing. Alternatively, as part of the construction of the wave
curve, we will show that all shocks satisfying the E-condition are entropy increasing.

Fig. 4.4.2 illustrates the qualitative features of a Hugoniot locus that can arise due
to a non-convex EOS. Indicated on the figure are the portion of the Hugoniot locus corre-
sponding to shocks that violate the characteristic criterion, and corresponding to shocks
for which viscous, heat conducting profiles do not exist. These complications do not oc-

cur for a convex EOS. In this case, (i) all compressive shocks satisfy the E-condition,
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(ii) the E-condition and the characteristic condition are equivalent, and (iii) viscous, heat
conducting profiles exist for all compressive shocks.

——— To Be Continued ——-

4.4 EOS with Phase Transition

For all materials, in most of the V—P plane isentropes are convex, i.e., G > 0. Typi-
cally, the non-convexity is associated with a phase transition. As seen in Figs. 3.1 and 3.2 a
phase transition leads to a mixed phase region in the V-P plane. A general result of ther-
modynamics for a mixture is that the frozen sound speed is greater than the equilibrium
sound speed. In the V-P plane this implies that an isentrope has a kink (discontinuity in
slope) at a saturation boundary; i.e., the sound speed in the pure phase is greater than
the sound speed in the mixed region. If as V increases the isentrope crosses the saturation
boundary from the mixed to the pure phase, then the kink causes the isentrope to be
non-convex. In addition, for some materials, isentropes in the pure phase near the critical
point are concave. Non-convex isentropes have been observed experimentally for fluids
with large specific heats, see [Cramer, 1989].

The van der Waal equation of state provides a simple analytic example which dis-
plays the qualitative features of a liquid-gas phase transition. The van der Waal equation
of state is defined by

(P+a/V*)(V—-0b)=RT, (4.24)

where R is the gas constant, and a and b are parameters which model imperfections in an
ideal gas; b represents an excluded volume from a hard core or strong short range repulsive
force between atoms or molecules, and a represents a longer range weakly attractive force.

With a constant specific heat Cy, the energy is given by (see Ex. 4.4)

and the entropy by

(P+a/V2)(V—b)
(Po+a/Vg) (Vo —b)" |’

S =S50+ Cy log (4.26)
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where v/ = 1+ R/Cy. Note, v’ is the ratio of specific heats and not the adiabatic exponent.
When a = 0 and b = 0, the van der Waal EOS reduces to an ideal y-law gas EOS.

Next we show that the van der Waal EOS has a mixed phase region. Furthermore, for
large heat capacity, 7’ is close to 1 and there is a non-convex region near the critical point
in the pure phase; see e.g., [Thompson & Lambrakis, 1973] or [Cramer & Sen, 1987]. The
isotherms are shown in Fig. 4.4. For low T the isotherms form what is called a van der Waal
loop; an anomalous region in which dy P|p > 0. In the anomalous region, the isothermal
compressibility is negative and the material is thermodynamical unstable. The boundary
of the unstable region dy P|p = 0 is shown as a dotted line and is called the spinodal.

Moreover, along the anomalous isentropes the Gibb’s free energy G = E4+ PV —T S
as shown in Fig. 4.5 is not monotonic. This has the following physical interpretation.
For a given T and P, the equilibrium state corresponds to the minimum value of G.
Along an isotherm, the curve G (P) crosses itself at the phase boundary. The curve
defined by the minimum G divides into a pure liquid phase and a pure gas phase. The
equilibrium isotherm in the mixed region corresponds to the line P = constant shown in
Fig. 4.4. The condition that the gas and liquid Gibb’s free energy are equal across the phase
boundary, G(V;,T) = G(V,,T) and P(V;,T) = P(V,,T), corresponds to Maxwell’s equal
area construction; the shaded area in the V—-P plane shown in Fig. 4.5 above and below
the equilibrium isotherm are equal. In the mixed region, beyond the liquid saturation
boundary is a meta-stable superheated liquid, and beyond the gas saturation boundary
is a meta-stable supercooled gas. As the spinodal is approached, the magnitude of a
perturbation needed to disturb the meta-stable state decreased towards 0.

At the critical temperature, the isotherm in the VP plane is tangent to the phase
boundary. Thus, the critical point is defined by dy P|r = 0 and 03 P|r = 0. For the

van der Waal EOS, the critical point occurs at

a
Pe=om
V,=3b, (4.27)
8a
RTC— m .
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FIGURE 4.4

Isotherms for van der Waal equation of state. Long-dashed and short-dashed lines
correspond to the liquid and gas saturation boundaries. The solid circle denotes
the critical point. The dotted lines represent the spinodal. Shaded area shows
Maxwell’s construction for equilibrium isotherm in mixed phase region.
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FIGURE 4.5

Gibbs free energy along isotherm through mixed phase region.
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Let us scale the thermodynamic variables by their values at the critical point; P = P/P,.,

V =V/V,, and T = T/T,. The scaled form of the van der Waal EOS
8T 3

3V-1 V2

P= (4.28)
is independent of all its parameters. This universality of the form of the EOS near a
critical point is known as the principle of corresponding states. In the vicinity of the
critical point, the phase boundary and critical exponents determined by the van der Waal
EOS corresponds to a mean field approximation; see [Bejan, 1988], chapter 6 sections
on corresponding states and critical-point phenomena. The mean field predictions are
qualitatively but not quantitatively in agreement with experimental measurements.

In the mixed region, the equilibrium values of the thermodynamic variables are a
linear combination of the values of the states at the phase boundary. In particular, the
entropy is given in terms of the specific volume by

_ IV = Vi(T)IS,(T) + [V,(T) ~ VISiT)
A e A E 1 —

(4.29)

where the subscripts g and 1 denote the values on the saturation boundary corresponding
to the gas and liquid respectively. From this it can be shown that the slope of the isentrope

in the VP plane is given by

(Sg—=50)/(Vo=V1)
(V—V) (@/d0)Vy+(Va—V)(d/dT)Vi _ (V—Vi)(d/dT)S,+(V,—V)(d/dD)S;
Vy—Vi 5,—5;

Oy Plg = (4.30)

We note that along the coexistence curve dP/dT |¢coex = (Sg— S1)/ (Vg —Vi). This is known
as the Clausius-Clapeyron relation. The behavior of the isentropes depends on whether
the specific heat is large or small.

In the typical case of a low to moderate specific heat, the isentropes are shown in
Fig. 4.6 (corresponding to v’ = 2). In this case all isentropes enter the mixed region from

the pure region with V' decreasing. Though the isentropes have a kink at the saturation
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Lecture 4

Isentropes for van der Waal equation of state with 4/ = 2. Long-dashed and
short-dashed lines correspond to the liquid and gas saturation boundaries. The
solid circle denotes the critical point.
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FIGURE 4.7

Isentropes for van der Waal equation of state with 4/ = 1.02. Long-dashed and
short-dashed lines correspond to the liquid and gas saturation boundaries. The
solid circle denotes the critical point. Shaded area corresponds to pure phase
region with G < 0.
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boundary, they remain convex. Moreover, as V decreases an isentrope remains in the
mixed region. This is possible since V; — oc as P — 0.

Large molecules have a large number of internal vibrational degrees of freedom and can
have a large specific heat. The isentropes for this case, as shown in Fig. 4.7 (corresponding
to v/ = 1.02), behave differently. In particular, isentropes with low S cut through the
mixed regime while those with large S are entirely in the pure phase. The isentropes
that cut through the mixed region are non-convex due to the kink at the gas saturation
boundary. Moreover, there is a region in the pure phase near the critical point in which
G < 0. This can be explained as follows. The critical isotherm has an inflection point at
the critical point. Isotherms slightly above the critical temperature tend to be concave
in the neighborhood of the critical point. Using thermodynamic identities, 03 P|s can be
expressed as 02 P|r plus other terms proportional to C‘;l; see e.g., [Cramer, 1989]. Thus,
for sufficiently large Cy the sign of 82 P|s and 8% P|r are the same, and the isentropes
loss convexity near a critical point. This is shown as the shaded region in Fig. 4.7.

Now that we know the structure of the isentropes due to a phase transition, it is
natural to ask what effect this has on the equilibrium wave structure. We first consider
the rarefaction branch of the wave curve. For the typical case shown in Fig. 4.6 the only
anomaly in the isentropes is a convex kink at the saturation boundary. Because of the
jump in the characteristic velocity this results in split rarefaction waves; i.e., a composite
of two rarefaction waves separated by a constant state. A non-convex kink in the isentrope
(as shown in Fig. 4.7 at the gas saturation boundary) has a more significant effect. Since
the characteristic velocity is not monotonic, a rarefaction curve can not be continued into a
non-convex region of the isentrope. Instead, an entropy increasing rarefaction shock occurs.
This leads to a composite wave consisting of a rarefaction wave, doubly sonic rarefaction
shock and another rarefaction wave at a higher entropy; see [Zel’dovich & Raizer, 1966]
Chpt. XI, sections 19 and 20. It should be emphasized that entropy increasing rarefaction

shocks when G < 0 are physical and have been observed experimentally; [Borisov, et al.,
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1983] and [Thompson, Carofano & Kim, 1986]. These are distinct from the unphysical
numerical entropy decreasing rarefaction shocks that can occur in Godunov upwind shock
capturing algorithms when approximate Riemann solver are used.

Next we consider the compressive branch of the wave curve. In the V—P plane, the
discontinuity in the sound speed results in a discontinuity in the slope of the Hugoniot
curve. When the jump in dP/dV|, results in a decrease in the wave speed, a single
shock becomes unstable and split shock waves occur; i.e., a lead shock to a state on the
saturation boundary followed by a second shock with a lower wave speed. As the strength
of the second shock increases, so does its wave speed. When the wave speed of the second
shock catches up with the wave speed of the lead shock, a single shock again becomes
stable. The stable portion of the single shock Hugoniot and split shocks form a continuous
wave curve. This is a consequence of the following general result.

Lemma 4.20 (Triple Shock Rule): Consider a system of conservation laws u;+ f(u); = 0.
Let uq, us and uz denote three states. If u; is connected to us by a shock with speed s,
and us is connected to ug by a shock with the same speed s, then u; is also connected
to uz by a shock with speed s.

Proof: Exercise 4.2.

We note that not all the unstable shocks are excluded by the characteristic criterion.
When there is a non-uniqueness in the structure of the wave curve, it appears that the
fastest wave (shock speed or the speed of lead wave for composite) is the most stable and
the one that physically occurs.

Similar split waves are common in elastic-plastic flow. The transition at the yield sur-
face between elastic and plastic flow, though changing the material properties irreversibly,
has a similar effect on the wave structure as a phase transition; i.e., the characteristic
speeds change discontinuously. Typically, a strong wave consists of an elastic precursor
followed by a plastic shock. When the plastic shock is sufficiently strong it overtakes the

precursor and there is only a single shock wave.
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Finally, we consider the effect due to smooth isentropes with G < 0, such as can
occur near a critical point as shown in Fig. 4.7. In the VP plane, this can result in a
smooth non-convex Hugoniot curve. At the point when the Hugoniot first losses convexity,
the slope of the Rayleigh line and hence the wave speed is a local maximum. By the
characteristic criterion, subsequent shocks along the Hugoniot curve are unstable. The
unstable shocks can be replaced by stable composites consisting of a sonic shock followed by
a compressive wave. An analogous type of composite wave structure occurs in detonations;
an underdriven sonic (CJ) detonation wave followed by a rarefaction called a Taylor wave.

As the wave strength increases, the composite wave is expanded by adjoining a second
shock after the compressive wave. Again it can be shown that the wave curve formed by
the stable portion of the shock Hugoniot and the composites is continuous; see [Wendroff,
1972] or [Menikoff & Plohr, 1989]. The allowable waves satisfy the Oleinik-Liu extended
entropy condition, [Liu, 1975] and [Liu, 1976]. When the wave structure is non-unique
this amounts to selecting the fastest wave. The selection of admissible waves is based on
considering which discontinuities have shock profiles and which waves are stable. These
considerations are necessary because the standard entropy condition and the characteristic
criterion are insufficient to determine a unique weak solution to the fluid equation with a
non-convex EOS.

The wave structure is important in determining the solution to a Riemann problem.
The solution to the Riemann problem can be determined from the geometric construction
using wave curves described in lecture 3. For a non-convex EOS there are too many waves
leading to a non-unique wave curve. The non-uniqueness is resolved by excluding the
unstable shocks and replacing them with stable composites. This determines a unique
solution to the RP. Examples of the wave structure that can occur with non-convex EOS
have been calculated in Refs. [Cramer & Kluwick, 1984], [Cramer & Sen, 1987] and [Cramer

& Fry, 1993].
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For an equilibrium EOS, the wave structure greatly enhances the understanding of
fluid flow in applications. Moreover, it serves as an important check on numerical simu-
lations of complicated flows. Some numerical errors result in an artificial wave structure
similar to what occurs for a non-convex EOS. Knowing this wave structure enables one to

recognize more readily a large class of numerical errors.

4.5 Non-Equilibrium Effects

Strong shock waves generated by high explosives are used to measure material proper-
ties in a high pressure and high temperature regime not accessible to static measurements,
see [Duvall & Graham, 1977]. These type of measurements for phase transitions (and
other applications as well) can be strongly affected by the non-equilibrium response of
materials. Though the details are outside the scope of these lectures, in order to under-
stand the range of applicability and limitations of the equilibrium fluid model, the principle
non-equilibrium behavior is summarized below.

Physical phenomenon of importance to fluid flow at high temperatures include dis-
sociation of molecules, ionization of atoms and radiation; see e.g., [Zel’dovich & Raizer,
1966], chapter 7. Each process has an associated time scale. When the time scale is small
compared to the time scale for the bulk fluid flow, an equilibrium description is usually a
good approximation. If the non-equilibrium processes are slow then extra variables and
associated rate equations are needed to describe the physical degrees of freedom in the
problem. Thus, non-equilibrium phenomena can be modeled in a manner similar to that
for reversible chemical reactions (see Ex. 4.5) or multi-phase flow, provided a continuum
description is applicable.

Usually the expanded set of equations are hyperbolic and describe a relaxation phe-
nomenon. The wave structure has a hierarchy of characteristics and sub-characteristics;
see [Whitham, 1974], chapter 10, and [Liu, 1987]. The characteristics describe the fast
time scale or transient acoustic response determined by the ‘frozen’ sound speeds. The

sub-characteristics describe the slow time scale or asymptotic wave behavior determined

Lecture 4.4 —158— Lecture 4.5



Lecture 4 Constraints on Equation of State Lecture 4

by the ‘equilibrium’ sound speeds. Several types of additional shock wave phenomena can
occur:
(i) A partially dispersed shock wave consisting of a discontinuous shock followed by a
relaxation layer. The discontinuity satisfies the Hugoniot jump conditions with the frozen
EOS and the full wave satisfies the Hugoniot jump conditions with the equilibrium EOS (see
Ex. 4.5). In the VP plane, for an endothermic process (such as ionization or dissociation)
the equilibrium Hugoniot is shifted down while for an exothermic reaction the equilibrium
Hugoniot is shifted up. As a result, the ‘signature’ of endothermic process is an increase
in the pressure following the lead shock while the ‘signature’ of a detonation is a decrease
in the pressure following the shock. In the exothermic case, the energy release can drive
the wave giving rise to a self-sustaining detonation.
(ii) When the frozen sound speed exceeds the equilibrium shock speed the wave is fully
dispersed and is continuous. The width of the wave depends on the non-equilibrium time
scale. The notion of a shock wave is no longer meaningful when the wave width is large
and the gradients in the bulk flow are comparable to those in the dispersed wave. For
example, a slowly oscillating small amplitude disturbance gives rise to acoustic waves that
fall in this category. In this case, since non-equilibrium effects are dissipative, the sound
wave decays in time.
(iii) For a Riemann problem, the early time transient response is based on the frozen wave
curve, and the asymptotic response is based on the equilibrium wave curve. Thus, non-
equilibrium processes give rise to a time dependent wave structure. A phase transition
can be considered as a non-equilibrium process. Thus, a time dependent wave structure
can occur when the initial and final state of a wave in the equilibrium theory solution to
a Riemann problem are in different phases.

For a description of the above three phenomena in terms of the Hugoniot curve
see [Fickett & Davis, 1979], section 4C4, “shock waves in a reactive mixture.”
(iv) Non-equilibrium processes can cause shock waves to be unstable. This is well known

to occur for detonation waves; see e.g., [Fickett & Davis, 1979], chapter 6. Instabilities of
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strong planar shock in argon have also been observed [Glass & Liu, 1978]; see also [Grun et
al., 1991]. Even though the wave is unstable the amplitude of the instability can saturate.
This is true for detonation waves since the energy density and pressure are too large to
support fingering type instabilities of the front. Thus, the wave can be well-behaved on a
large length scale and have fluctuation on a short scale akin to turbulence.

Finally, we mention a few application when non-equilibrium effects are important:
(i) Dissociation and ionization of air are quite important for the performance of a jet
engine, for hypersonic flow of a supersonic jet and for re-entry of a spacecraft.
(ii) The expansion of a high temperature gas through a nozzle can occur on a shorter time
scale than the vibrational relaxation time scale giving rise to population inversion. This is
the basis for a gas dynamic laser.
(iii) The flow in a wind tunnel requires very dry air. Otherwise water vapor in the air gives
rise to a condensation shock which has an adverse affect on the characteristics of the wind
tunnel.
(iv) For magnetically confined fusion, the plasma is optically thin. As a consequence one

has to allow for the ions, electrons and radiation to be out of thermal equilibrium.

General references:
1. [Smith, 1979]
2. [Menikoff & Plohr, 1989]
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Exercises
Is V a good choice to parameterize shock Hugoniot?
Proof the triple shock rule (Lemma, 4.20).

Consider the shock Hugoniot locus in the V—P plane.

A) In the standard case, G > 0 and v — 1 > T" > 0, show that the slopes of the Hugoniot

locus, isentrope and Rayleigh line are related by

-1 -1 -1
AP/AV > (dP/dV)s > (dP/dV)y

(4E.1)

B) What is the geometric interpretation of AF and Au? In the strong shock limit Py — oo

show that

AFE

%u2 ( )

A) Proof the thermodynamic relation

Oy S|r = 9P|y . (4E.3)

B) Determine the entropy for the van der Waal EOS.

C) Determine the specific energy for the van der Waal EOS.

Consider the fluid flow equations augmented by one rate process for an energy source

term
p pu 0
2
pu pu® + P 0
0] + 0y = , 4F 4
| pGu+E) p(zu*+E)u+Pu pPRQ WD
pA PUN PR

where A is a mass fraction, R is a rate (mass fraction per unit time), and @ is an energy

per unit mass. The variable A can be associated with a non-equilibrium degree of freedom
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for the ionization of an atom, the dissociation or vibrational energy of a molecule, or a
chemical reaction. The EOS is assumed to be a function of the internal state variables,
P=P(V,E, ).

For a reversible process the rate typically has the form
R=~[A=Aeq(V, B)]/7(V, E) (4E.5)

where Aeq(V, E) is the equilibrium value and 7(V, E) is the time constant for equilibration.
For an explosive, the initial state is assumed to be meta-stable and the reaction is irre-
versible R > 0. Once initiated the reaction runs to completion; i.e., from A = 0 (reactants)

to A =1 (reaction products).

A) Assume @ is constant. What happens to the fluid equations under the transformation
of the EOS _
E=F-)Q,
L (4E.6)
P(V,E,\)=P(V,E,)) .
For a steady partly dispersed shock wave, how is the Hugoniot equation Eq. (2.22) modi-
fied?
Assume an ideal gas EOS, PV = RT, for an irreversible reaction A — B that does

not change the particle number. Furthermore, suppose the specific heat
Cy =R/(v-1)

is constant independent of A\. Then the effective EOS in part (A) for an ideal explosive is

given by
CyT =FE+ \Q
- - (4E.7)
P(V,EN)=(y-1)(E+AQ)/V .
B) Determine the Hugoniot locus for an ideal explosive. How is Py (V) affected by the

heat release?
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C) For @ > 0, find the minimum wave speed and the corresponding point on the Hugoniot
locus. This point is known as the Chapman-Jouguet or CJ state. In the limit when

PyVy/Q — 0 show that
P, :2(7_1))00Q )

VCJ/% :7/(7+1) )
D¢, =2(v*-1)Q, (4E.8)
Ugy = DCJ/('Y + 1) )

ccs = YDes /(v +1) ,
where the detonation velocity, denoted by D, is the wave speed.

D) Show that the CJ state is a local entropy minimum, and sonic relative to the wave
front. Furthermore, show that the flow behind a wave on the strong branch (P > P;) is

subsonic and on the weak branch (P < Pc;) is supersonic.

E) For steady state show that the reaction profile lies on the Rayleigh line. When @ > 0,
there are two solutions to the Hugoniot jump conditions for wave speeds ¢ > Dgj. Which

solution is physically admissible.

F) Show for a partly dispersed shock wave: (i) When @ > 0, the pressure decreases behind
the lead shock. This is characteristic of a detonation wave. (ii) When @) < 0, the pressure

increases behind the lead shock. This is characteristic of a relaxation wave.

Assume a shock wave is propagating into a region in which the ahead state is con-
stant. Suppose the shock wave is overtaken from behind by a rarefaction or compressive

wave.

A) From the characteristic equations show that the time evolution of the shock strength

is related to the spatial gradients behind the shock wave

dS/da (0 —u)0,S
(fi_(: [0 —u+ pc(du/dP)y)dP/da | = | [(0 —u)? — 2] 0,P , (4E.9)
[c —u+ V(dP/du)p] pcdu/do [(0 —u)? — 2] pcOyu

where o is the wave speed, « is the parameterization of the Hugoniot locus in Egs. (4.12)—

(4.17), and subscript ‘h’ denotes derivatives along the Hugoniot locus.
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B) The vector on the left hand side of the shock change relation has a direction fixed by
the Hugoniot locus and magnitude given by the change in shock strength, da/dt. On the
other hand, for an initial value problem the spatial gradients on the right hand side can be
set independently. Thus, the vectors on the left and right hand side of the shock change
equation may not point in the same direction. How is this paradox resolved?

Hint: consider the flow resulting from a rarefaction wave overtaking a shock wave.
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Solutions

For a given initial state, the Hugoniot locus can be parameterized by a single variable.
Specific volume is not a good parameterization for three reasons:
(i) The maximum shock compression ratio is finite. Thus, the range of V' is limited.
(ii) For strong shocks the shock state is very sensitive to small changes in V.
(iii) In general, only the medium condition is satisfied and the Hugoniot locus is not a
single-valued function of V.
It is more convenient to parameterize the Hugoniot locus with wave speed, pressure or

particle velocity.

From the Hugoniot jump conditions

—5- (ug —u1) + fuz2) — f(u1) =0,

—s-(ug —uz2) + f(ug) — f(uz) =0 .

Adding these equations gives

—s-(uz —u1)+ f(usz) — f(u1) =0.

Hence, there is a shock connecting states u; and us with the same wave speed.

A) From Egs. (2.16) and (2.18)

AP

Ao

From Eq. (1.12)
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When G > 0, by Th. 4.1, the flow behind a physical entropy increasing shock is subsonic,

_aP (4P
AV )

In the standard case, along the Hugoniot locus P and S are monotonically increasing.

(0 —u1)? < ci. Hence,

Moreover, 0P/0S|y > 0 when I' > 0. Hence,

1 1
(dPjdV)s ~ (dPjdV);,

For most of the Hugoniot locus dP/dV|;, < 0 and the relation among the slopes can be

expressed as by

—AP/AV < —(dP/dV)s < —(dP/dV)y . (45.1)

At extremums in V, (dP/dV) is discontinuous while (dV/dP), is continuous. Conse-
quently, Eq. (4E.1) covers the entire range while Eq. (4S.1) is limited to portion of Hugoniot

locus in which V' is monotonically decreasing.

B) The Hugoniot equation (2.22) is

AE=1(P+P) (Vo-Wi).

Therefore, AE is the area of the trapezoid under the Rayleigh line. From Eq. (2.23)

(Au)? = (P — Py) - (Vo — VA1)

Therefore, (Au)? is the area of a rectangle. In the strong shock limit, Py can be neglected
compared to to P;. The trapezoid degenerates into a triangle which is half of the rectangle.

Therefore, in the strong shock limit AE ~ 1 (Au)?.
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A) The Helmholtz free energy is defined by
FV,T)=FE-TS .
From the thermodynamic relation dE = —PdV + T'dS we find
dF = -SdT — PdV .

The equality of the cross derivatives leads to one of Maxwell’s relations

95| _ oF _op
V|, oVeT  aT

v
B) The specific heat is given by

Cy = 0rE|y = TdrS|y .

For the van der Waal EOS

oP| _ R
oTr|, V-b"
Therefore,
oS oS
dS= —| dI'+ —| dV
S=ar|, T v,
dT av
Hence,

S = Sy + Cv log(T/To) + Rlog[(V — b)/(Vo — b)] .

Using the EOS to eliminate T leads to Eq. (4.26).

C) From the above equation for dS we find

dE =TdS — PdV
=CydT + [RT/(V —b)— P|dV
=CydT + [RT/(V —b) — P]dV
dv

Integration then gives Eq. (4.25).
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A) The transformed system of equations is

p pu 0
.
pu pu® + P 0
) ~ Oz ~ ~ = 45.2
’ p(3u*+E) T p(3u*+E)u+ Pu 0 (452)
pPA pu R

The first three equations are identical to the usual fluid flow equations. The fourth equation

has the form of a rate equation along particle trajectories

d
CA=R. 48.3
@ =" (45:3)

Thus, by incorporating the heat release in the EOS, the energy source term drops out.
The fluid variables satisfy the standard jump conditions. The same algebraic manip-

ulations that lead to Eq. (2.22) leads to the modified Hugoniot equation
Ei—Ey=5Pi+Py) Vo-V1)+Q-(A1—Xo) . (45.4)
Because of the source term, the fourth jump equation,
—0AlpA] + Alpul] = /p’R dx ,

is not an algebraic equation but depends on the wave profile. However, if a steady state

wave exists then the state behind the wave must be in equilibrium,
A1 = Aeq(V1, En) -

The Hugoniot equation, the equilibrium condition and the equation of state form a system
of three algebraic equations that determine the three variables Vi, E1, A1 for the possible
end state of a steady wave.

For an irreversible reaction, Ay = 0 and A\; = 1. The jump conditions then simplify

to a single Hugoniot equation
Ei—Ey=3Pi+PR) - Vo—-V)+Q. (45.5)

Thus, for an explosive, the state behind a detonation wave is determined by the Hugoniot

equation. A detonation wave in an explosive is analogous to a shock wave in a non-reactive

fluid.
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B) From the modified EOS, Eq. (4E.7), and the modified Hugoniot equation, Eq. (4S.5),
the Hugoniot locus for an ideal explosive can be derived by similar algebraic manipulations
to those used in Ex. 2.7A to derive the Hugoniot locus for an ideal gas. The result

analogous to Eq. (2S.18) is

AP —(y-1
Ay — - YoBF 0-De (45.6a)
vPo+ 3 (v+1)AP

or
AP = (‘7/011; %171]; OAA‘Y (45.6b)
The wave speed is determined by Eq. (2.18)
(poo)? = —AP/AV | (45.7)
and the particle velocity by Eq. (2.23)
(Au)®> = —APAV . (45.8)

Thus, the Hugoniot locus can easily be parameterized by P or V. From Eq. (4S.6b) the
Hugoniot curve Py (V) is shifted up when the reaction is exothermic, @ > 0, and down
when the reaction is endothermic, ) < 0.

An illustrative case of a Hugoniot locus for an explosive is shown in Fig. 4.8. The
branch, AP > 0 and AV < 0, corresponds to waves which are supersonic with respect to
the ahead state (unreacted material). This is known as the detonation branch. Detonation
waves are dominated by inertial effects. They are the analog of shock waves for a non-
reactive material.

The branch, AP < 0 and AV > 0, corresponds to subsonic waves. For a non-
reactive material, subsonic waves are excluded because the entropy jump across the wave
is negative. However, for an explosive, the entropy is increased sufficiently by the reaction
for the total entropy jump across the wave to be positive. The subsonic waves form the
deflagration branch of the Hugoniot locus for an explosive. Even though deflagration

waves satisfy the conservation laws and are entropy increasing, they may not be physically
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FIGURE 4.8

Hugoniot locus for an ideal explosive; v = 1.5, @ = 10, P, = 1 and Vp = 1.
The left plot is the detonation branch and the right plot is the deflagration
branch. The Hugoniot locus between V = 1 and P = 1 is excluded because
D? = —AP/AV < 0. The solid curve corresponds to full reaction A = 1, and
the dotted curve to no reaction A = 0. The open circle is the initial state, the
solid circle is the CJ state. The Rayleigh line through the CJ state is shown as a

dashed line.

admissible. Transport effects, in particular heat conduction, are important for subsonic

waves. Usually a wave profile exists for only a single point on the deflagration branch.

Since we are neglecting transport effects, deflagration waves are outside the scope of these

lectures.

C) Substituting Eq. (4S.6a) for AV into Eq. (45.7) we find

( 0)2_AP-[7P0+§(7+1)AP]
PO E VAP — (=1 Q

A local extremum occurs when

d

_— 2:

This leads to the quadratic equation for AP

(AP —2(y—1) po@aP — 20 =1 op —0.

v+1
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The solution on the detonation branch, AP > 0, is

2 3
AP = (y—1) poQ - [1 + (1 o . - -POVO/Q) ] . (48.11)

Substituting for AP into Eq. (4S.6a) gives

=

14+ -2 P,Vo/Q)"
C— -
0

%(’Y-i-l) [l—l- (1+ 72211 -PoVo/Q) ] + ﬁ - PoVo/Q

=

and into Eq. (4S.9) yields

D2,/Q = (v~ 1)+ T DENPN/Q |y g (45.13)

(1+ %5 - PVe/@Q)

The velocity can be obtained from Eq. (4S.8) and the sound speed from the equation
c2 =vPV.

Asymptotically for P > poQ, the heat release is negligible and an ideal explosive
EOS reduces to an ordinary ideal gas EOS. Therefore, asymptotically the wave speed
increases with shock pressure. Conversely, as the pressure decreases the first and only
local extremum of the wave speed must be a minimum. Consequently, the CJ state has
the minimum wave speed. Geometrically, in the VP plane, the Rayleigh line is tangent
to the Hugoniot locus at the CJ state as shown in Fig. 4.8. Because Py (V) is shifted up
for @ > 0, the slope of the Rayleigh line is minimum at the CJ state. By Eq. (4S.7) the
minimum slope corresponds to the minimum wave speed.

When the heat release is large, the term PyVy/Q can be neglected and the formulae

greatly simplify. The resulting expressions for the CJ state are given in Eq. (4E.8).

D) For an explosive, the Hugoniot locus corresponds to the shock locus for the detonation
products with a non-equilibrium initial state. Hence, we can apply results on the local
behavior of the Hugoniot locus. From the previous part, the Rayleigh line is tangent to the

Hugoniot locus at the CJ state. Moreover, the slope of the Rayleigh line, m? = —AP/AV,
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is a minimum at the CJ state. It follows from Eq. (4.20) that the CJ state is an entropy
minimum. From Lemma 4.11 an entropy extemum is also a sonic point. The weak condition
is valid for the equation of state (4E.6). From Eq. (4.16) it follows that the parameter
« increases with P. Then Eq. (4.12) implies that the flow behind a strong detonation
(P > Pg;) is subsonic and the flow behind a weak detonation (P < Pc;) is supersonic.
We note for the deflagration branch a similar analysis can be used to show that (i) the
CJ state is an entropy maximum, (ii) the CJ state is sonic, (iii) the flow behind a weak
deflagration (P > P.;) is subsonic and the flow behind a strong deflagration (P < Pc;) is
supersonic. For both the detonation locus and the deflagration locus, the weak branch is
defined as lying between the initial state and the CJ state.

Alternatively, for a direct proof that the CJ state is sonic, we start by finding the
condition for which the Rayleigh line is tangent to the isentrope.

AP «P
AV V7

or
(Vo + AV)AP = —y(Py + AP) AV .

Substituting Eq. (4S.6a) for AV leads to a quadratic equation for AP. The quadratic
equation is identical to Eq. (45.10). Therefore, the condition that the Rayleigh line is
tangent to the isentrope is the same as the condition that the wave speed is an extremum.
Using Eq. (4S.7), the tangency condition and the mass flux is constant for a steady wave,

poo = p(o — u), we obtain

[p- (o —u)]* = (poo)” = (pc)” .
Hence, at the CJ state (o — u)? = 2.

E) It follow from the jump conditions for mass and momentum, Eqgs. (2.17a) and (2.17b)

that
AP

(poD)? = m? = AV (2.18)
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For fixed wave speed, this is the equation of a straight line in the VP plane. The points on
the reaction profile can be parameterized with the value of the mass fraction A. For a given
A and D, the state is determined by the partially burnt Hugoniot equation; i.e., Eq. (4S.5)
with @ replaced by A@Q. Consequently, the partially burnt Hugoniot is given by Egs. (4S.6)—
(4S.9) with @ replaced by AQ.

The detonation wave is supersonic relative to the ambient material. When transport
effects (viscosity and heat conduction) are neglected, the profile can not consist of the line
segment from the initial state to the weak branch of the Hugoniot locus because there is
no mechanism for initiating the reaction. Consequently, a detonation wave consists of a
lead shock in the reactants followed by a profile which moves along the Rayleigh line from
a point on the Hugoniot locus of the reactants to a point on the Hugoniot locus of the
reaction products. The shock heating raises the temperature and initiates the reaction.
This is the ZND-model which was derived during WW II independently by Zel’dovich,
von Neumann and Doering.

An important conclusion of the ZND-model is that points on the strong branch of
the Hugoniot locus correspond to admissible waves and the weak branch is unphysical.
Because the CJ state is sonic, a rarefaction (known as a Taylor wave) can be adjoined to
a CJ detonation to form a composite. This enables compatibility for any back boundary
condition with P < P,;. Consequently, the CJ state corresponds to a self-sustaining
underdriven detonation wave; i.e., the lead shock initiates the reaction and the energy
given off by the reaction drives the lead shock.

The ZND-model is overly simplistic. The fact that it is a good approximation in many
cases is an indication of the importance of jump conditions for conservation laws. Addi-
tional physical effects not included in the ZND-model can be important but are beyond the
scope of these lectures. The ZND-model does illustrate that though the entropy condition

is necessary, it is not always sufficient for selecting the physical waves.
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F) From part (B) the Hugoniot locus P, (V) is shifted up when @) > 0 and shifted down
when @@ < 0. From part (E) for a given detonation speed the partly dispersed wave
profile lies on the Rayleigh line, and extends from the Hugoniot locus with the initial
value of Ay to the Hugoniot locus with the final equilibrium value of A¢q. Consequently,
when () > 0 the pressure following the lead shock goes down. This is characteristic of
a detonation wave. Conversely, when () < 0 the pressure following the lead shock goes
up. This is characteristic of a relaxation layer. Relaxation processes, such as ionization or
dissociation, have a similar effect on a partly dispersed wave as an endothermic reaction.
When the Hugoniot locus is shifted down, there is the additional possibility that the final
equilibrium state lies below the Rayleigh line with slope corresponding to the frozen sound
speed. In this case, a lead shock is not possible and the wave profile is fully dispersed. In
effect, for weak waves the relaxation process provides sufficient dissipation to completely

smear out the profile.

A) The derivative

d
E—at-l-()'ag;

corresponds to the advection of a point behind the shock front. The characteristic equa-
tions (1.13) can be written in terms of the advective derivative for the shock front by

adding and subtracting terms with 0,

%S = (0 —u)0,S
iP + pciu = (0 —u—c)- (0P + pcozu) , (45.14)
dty dty
d

—P — pciu =(c—u+c)- (0P — pcozu) .

The state behind the shock lies on the Hugoniot locus and can be parameterized by the

shock strength a. Using the chain rule, derivatives behind the shock can be related to
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derivatives involving the shock strength; e.g., (d/dt,)P = da/dt - dP/da. Behind the

shock front Eq. (4S.14) can be expressed as

dS/do o—u 0 0 S
Cfl—(z (dP/da) + pc(du/da) | = 0 (c—u—c) (c—u—c)pc |0 | P
(dP/da) — pc (du/da) 0 (c—u+c) —(c—u+c)pc u

(45.15)

Multiplying the left and right hand side by the matrix

2 0 0
% 0 —(J—U+C) —(O'—U—C) 3
0 —(c—u+c¢) (c—u—c)

and using relations along the Hugoniot locus, such as du/da = (dP/da) - (du/dP)p, leads
to Eq. (4E.9).

B) Consider a simple wave overtaking a shock wave from behind, see Fig. 4.9. The leading
edge of a simple wave is a weak singularity; i.e., the flow is continuous but the derivatives of
the flow are discontinuous at the boundary between a uniform region and a simple region.
When the leading edge of the simple wave impacts the shock front, the left and right hand
side of the shock change relation do not point in the same direction.

In contrast to a Riemann problem, the initial data is not scale invariant. Consequently,
the subsequent flow is not scale invariant, and the outgoing waves are not limited to be
only shocks, centered-rarefactions and contacts. The shock state is determined by the
incoming characteristics from the overtaking wave and the Hugoniot locus for the state
ahead of the shock. Therefore, the shock strength will vary continuously in time, and with
it the Riemann invariant of the characteristic going through the shock will vary. In the
interaction region in which the incident simple wave and the reflected wave overlap, neither
Riemann invariant is constant. Thus, the overlap region is non-simple. The leading edge
of the reflected characteristic (opposite wave family to the shock) is a weak singularity.

If the reflected wave is compressive, then it eventually focuses into a shock. This may
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FIGURE 4.9

Overtake of shock wave by simple wave. The thick line is the shock front, the thin
lines are the forward characteristics of the incident simple wave, and the dashed
lines are the backwards characteristics of the reflected wave. The interaction
region in which the waves overlap is shown as the shadded region. The leading
edge and trailing edge of the reflected wave are weak singularities. The particle
trajectories and entropy wave are not shown.

occur within the interaction region. If the reflected wave is a rarefaction then it leaves the
interaction region as a non-centered simple wave. In addition, as the strength of the lead
shock varies, the entropy along particle trajectories crossing through it varies. Therefore,
between the reflected wave and the shock, there is an entropy wave or smeared out contact.

The initial value problem with an arbitrary gradient in the flow behind a shock results
in a qualitatively similar flow consisting of a shock and a weak singularity of the opposite
family. The important point is that the incoming characteristic determines the change in
the shock strength. The addition of the weak singularity resolves the inconsistency when

the vectors on the left and right hand side of the shock change relation are incompatible.
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